Two Aspects of Śūnyatā in Quantum Physics: Relativity of Properties and Quantum Non-separability

  • Michel BitbolEmail author


The so-called paradoxes of quantum physics are easily disposed of as soon as one accepts that there are no such things as intrinsically existing particles and their intrinsic properties, but that both particles and properties are relational “observables.” Accordingly, quantum physics does not offer a “description of the outer world,” but rather a prescription about how to make probabilistic predictions within a participatory environment. The latter view (or rather criticism of views) looks quite radical with respect to standard Western Aristotelian ontology; but it looks natural in the context of the Indian-Buddhist concept of Pratītyasamutpāda which underpins Śūnyatā. Special attention will then be devoted to the quantum feature of non-separability, which displays remarkable similarities with Pratītyasamutpāda. Finally, the meaning of such twofold parallel between quantum physics and Śūnyatā will be discussed. This parallel will be related to the similarity of epistemological situation between knowing a world from which we are not entirely separated and knowing oneself.


Śūnyatā Pratītyasamutpāda Quantum non-separability Paradoxes of quantum physics Probabilistic predictions Participatory environment 


  1. 1.
    Einstein A. Oeuvres choisies, 1 Quanta. Seuil: CNRS Editions; 1989.Google Scholar
  2. 2.
    HH the Dalai-Lama. The universe in a single atom. Burlington: Morgan Road Books; 2005. p. 69.Google Scholar
  3. 3.
    Zajonc A, Greenstein. The quantum challenge: modern research on the foundations of quantum. Burlington: Jones & Bartlett Publishers; 1997.Google Scholar
  4. 4.
    Smerlak M, Rovelli C. “Relational EPR”. Found Phys. 2007;37:427–445; Bitbol M. “An analysis of the Einstein-Podolsky-Rosen correlations in terms of events”. Phys Lett. 1983;96A:66–70.Google Scholar
  5. 5.
    Mohrhoff U. “The world according to quantum mechanics (Or the 18 errors of Henry P. Stapp)”. Found Phys. 2002;32(2):217–254; Bitbol M. “Consciousness, situations, and the measurement problem of quantum mechanics”. NeuroQuantology. 2008;6:203–13.Google Scholar
  6. 6.
    Zeilinger A. « Foundational principle for quantum mechanics ». Found Phys. 1999;29:631–43; Fuchs CA. « Quantum mechanics (and only a little more) ». In: Khrennikov A, editors. Quantum theory: reconsideration of foundations. Växjo: Växjo University Press; 2002; Grinbaum A. « Elements of information-theoretic derivation of the formalism of quantum theory ». Int J Quantum Inf. 2003;1:289–300.Google Scholar
  7. 7.
    Gröblacher S, Paterek T, Kaltenbaek R, Brukner C, Zukowski M, Aspelmeyer M, Zeilinger A. An experimental test of non-local realism. Nature. 2007;446:871–5.CrossRefGoogle Scholar
  8. 8.
    Lévy-Leblond JM, Balibar F. Quantique: rudiments. Paris: Interéditions; 1984.Google Scholar
  9. 9.
    Destouches-Février P. La structure des théories physiques. Paris: P.U.F; 1951.Google Scholar
  10. 10.
    Schrödinger E. “The present situation in quantum mechanics”. In: Wheeler JA, Zurek WH, editors. Quantum theory and measurement. Princeton University Press: Princeton; [1935] 1983.Google Scholar
  11. 11.
    Lyre H. “Against measurement? – on the concept of information”. In: Blanchard P, Jadczyk, A, editors. Quantum future: from volta and como to present and beyond. Berlin: Springer; 1999; Lyre H “Against measurement? – on the concept of information”. In: Blanchard P, Jadczyk, A, editors. Quantum future: from volta and como to present and beyond. Berlin: Springer; 1999; Bitbol M. “Decoherence and the constitution of objectivity”. In: Bitbol M, Kerszberg P, Petitot J, editors. Constituting objectivity: transcendental perspectives on modern physics. Berlin: Springer; 2009.Google Scholar
  12. 12.
    Bitbol M. La mécanique quantique comme théorie des probabilités généralisée. In: Klein E, Sacquin Y, editors. Prévision et probabilités dans les sciences. Paris: Editions Frontières; 1998.Google Scholar
  13. 13.
    Einstein A, Podolsky B, Rosen N. “Can quantum-mechanical description of reality be considered complete ?” In: Wheeler JA, Zurek WH, editors. Quantum theory and measurement, Princeton University Press: Princeton; [1935] 1983.Google Scholar
  14. 14.
    Espagnat B. d’ (1994), Le réel voilé, Paris : Fayard.Google Scholar
  15. 15.
    Bell JS. Speakable and unspeakable in quantum mechanics. Cambridge: Cambridge University Press; 1987. Bell’s theorem establishes the incompatibility of quantum mechanics with certain inequalities (the Bell inequalities) which inevitably result from theories with local hidden variables.Google Scholar
  16. 16.
    Suarez A. Quantum mechanics versus multisimultaneity in experiments with acousto-optic choice devices. Phys Lett. 2000;A269:293–302.CrossRefGoogle Scholar
  17. 17.
    Bohm D. Wholeness and implicate order. London: Ark Paperbacks; 1984.Google Scholar
  18. 18.
    Bitbol M. “An analysis of the Einstein-Podolsky-Rosen correlations in terms of events”. Phys Lett 1983;96A:66–70; Smerlak M, Rovelli C. “Relational EPR”. Found Phys. 2007;37:427–45.Google Scholar
  19. 19.
    Brukner C, Zeilinger A. Information invariance and quantum probabilities. Found Phys. 2009;39:677–89.CrossRefGoogle Scholar
  20. 20.
    Scully MO, Drühl K. “Quantum eraser: a proposed photon correlation experiment concerning observation and ‘delayed choice’ in quantum mechanics”. Phys Rev A. 1982;25:2208–2213; Elitzur AC, Dolev S, Zeilinger A. “Time-reversed EPR and the choice of histories in quantum mechanics”. In: Proceedings of XXIISolvay conference in physics. Singapore: World Scientific; 2003. p. 452–61.Google Scholar
  21. 21.
    Elitzur AC, Vaidman L. Quantum mechanical interaction-free measurements. Found Phys. 1993;23:987–97.CrossRefGoogle Scholar
  22. 22.
    Bruza P, Sofge D, Lawless W, van Rijsbergen CJ, Klusch M, editors. Quantum interaction. Berlin: Springer; 2009a; Busemeyer J, Bruza P. Quantum models of cognition and decision. Cambridge: Cambridge University Press; 2014.Google Scholar
  23. 23.
    Zwirn H. Formalisme quantique et préférences indéterminées en théorie de la décision. In: Bitbol M, editor. Théorie quantique et sciences humaines. Paris: CNRS Editions; 2009.Google Scholar
  24. 24.
    Bruza PD, Kitto K, Nelson D, McEvoy C. Is there something quantum-like about the human mental lexicon? J Math Psychol. 2009b;53:362–77.CrossRefGoogle Scholar
  25. 25.
    Stengers I. Cosmopolitiques 4: Mécanique quantique, la fin du rêve. Paris: La Découverte; 1997.Google Scholar
  26. 26.
    Thom R. Prédire n’est pas expliquer. Paris: Flammarion; 1993.Google Scholar
  27. 27.
    Scheler M. Problèmes de sociologie de la connaissance. Paris: Presses Universitaires de France; 1993.Google Scholar
  28. 28.
    Schrödinger E. Nature and the Greeks. Cambridge: Cambridge University Press; 1954.Google Scholar
  29. 29.
    Seamon D, Zajonc A, editors. Goethe’s way of science. Albany: SUNY Press; 1998.Google Scholar
  30. 30.
    Kant I. Inaugural dissertation of 1770. Whitefish : Kessinger Publishing; [1770] 2004.Google Scholar
  31. 31.
    Descartes R. Œuvres Philosophiques IV. Paris: Hachette; 1835. p. 30.Google Scholar
  32. 32.
    Descartes R. Les principes de la philosophie II. In: Œuvres Philosophiques III. Paris: Garnier; 1973. p. 195.Google Scholar
  33. 33.
    Schlick M. Philosophical papers II (1925–1936). Dordrecht: Reidel; 1979. p. 26.Google Scholar
  34. 34.
    Schrödinger E. Discussion of probability relations between separated systems. Proc Camb Philos Soc. 1935;31:555–63.CrossRefGoogle Scholar
  35. 35.
    Mermin ND. What is quantum mechanics trying to tell us ? Am J Phys. 1998;66:753–67.CrossRefGoogle Scholar
  36. 36.
    Mermin ND. The Ithaca interpretation of quantum mechanics. Pramana. 1998;51:549–65.CrossRefGoogle Scholar
  37. 37.
    Quine WVO., “Grades of discriminability”. J Philos. 1976;73:113–16; Saunders S. “Physics and Leibniz’s principles”. In: Brading K, Castellani E, editors. Symmetries in physics: new reflections. Cambridge: Cambridge University Press; 2003.Google Scholar
  38. 38.
    Candrakīrti. Madhyamakāvatāra, 6, 17. In: Huntington CN, Wangchen GN, editors. The emptiness of emptiness. Hon- olulu: University of Hawaii Press; 1989. p. 159.Google Scholar
  39. 39.
    Nāgārjuna. Mūlamadhyamakakarikā, I, 7. In: Garfield J, editor. The fundamental wisdom of the middle way. Oxford: Oxford University Press; 1995.Google Scholar
  40. 40.
    Suarez A. « Quantum mechanics versus multisimultaneity in experiments with acousto-optic choice-devices ». Phys Lett. 2000;A269:293–302; Stefanov A, Zbinden H, Gisin N, Suarez A. « Quantum entanglement with acousto-optic modulators: 2-photon beatings and Bell experiments with moving beamsplitters ». Phys Rev. 2003;A67:042115.Google Scholar
  41. 41.
    Stcherbatsky T. The conception of Buddhist Nirvāna. Leningrad: Academy of Science of the USSR; 1927.Google Scholar
  42. 42.
    Cabello A. « Quantum correlations are not local elements of reality », loc. cit. ». Phys Rev. 1999;A59:113–15; Cabello A. « Quantum correlations are not contained in the initial state». Phys Rev. 1999;A 60:877–80; 1999.Google Scholar
  43. 43.
    Smerlak M, Rovelli C. Relational EPR. Found Phys. 2007;37:427–45.CrossRefGoogle Scholar
  44. 44.
    Kant I. Critique of pure reason, B278. Indianapolis: Hackett; 1996. p. 291.Google Scholar
  45. 45.
    Mehlberg H. Time, causality, and the quantum theory I. Dordrecht: Reidel; 1980.Google Scholar
  46. 46.
    Augustine S. Confessions. Oxford: Oxford University Press; 1998.Google Scholar
  47. 47.
    Page DN, Wootters WK. « Evolution without evolution: dynamics described by stationary observables ». Phys Rev; 1983:D 27: 2885–92; also, Deutsch D. « Three experimental implications of the Everett interpretation » In: Penrose R, Isham IJ, editors. Quantum concepts in time and space. Oxford: Oxford University Press; 1986.Google Scholar
  48. 48.
    Barbour J. The end of time. London: Phoenix Paperbacks; 2000.Google Scholar
  49. 49.
    Rovelli C. “Relational quantum mechanics”. Int J Theor Phys. 1996;35:1637–57; Smerlak M, Rovelli C. “Relational EPR”, op. cit.Google Scholar
  50. 50.
    Destouches-Février P. La structure des théories physiques. Paris: Presses Universitaires de France; 1951. p. 260–80; see Bitbol M. “A cure for metaphysical illusions: kant, quantum mechanics and madhyamaka”. In: Wallace BA, editors. Buddhism and science. Columbia: Columbia University Press; 2003.Google Scholar
  51. 51.
    Finkelstein DR. Emptiness and relativity. In: Wallace A, editor. Buddhism and science. Columbia: Columbia University Press; 2003.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Archives Husserl, Ecole Normale SuperieureParisFrance

Personalised recommendations