Emergent Reality in Quantum from Classical Transition

  • Tabish QureshiEmail author


The very fact that a quantum measurement changes the quantum state of a system in an uncontrollable way implies that the measurement does not reveal the objective reality that existed before the measurement. We argue that the nature of certain special quantum states that emerge due to decoherent interaction with the environment is such that one can measure the expectation value of any observable of the system in a single measurement. This can be done even when such states are a priori unknown. The possibility of measuring the expectation value of any observable, without any prior knowledge of the state, points to the objective reality of such states.


Emergent reality Quantum measurement Decoherent incorrection Hermitian operators Eigenvalue Expectation value 


  1. 1.
    Wheeler JA, Zurek WH, editors. Quantum theory and measurement. Princeton: Princeton University Press; 1983. p. 182–213.Google Scholar
  2. 2.
    Auletta G. Foundations and interpretation of quantum theory. Singapore: World Scientific; 2000.CrossRefGoogle Scholar
  3. 3.
    Zeh HD, On the interpretation of measurement in quantum theory. Found Phys. 1970;1:69; Joos E, Zeh HD, The emergence of classical properties through interaction with the environment. Z Phys. 1985;D 59:223.Google Scholar
  4. 4.
    Giulini D, Joos E, Kiefer C, Kupsch J, Stamatescu I-O, Zeh HD, editors. Decoherence and the appearance of a classical world in quantum theory. Berlin/London: Springer; 1996.Google Scholar
  5. 5.
    Zurek WH. Decoherence and the transition from quantum to classical. Phys Today. 1991;44(10):36.CrossRefGoogle Scholar
  6. 6.
    Gogolin C. Environment-induced super selection without pointer states. Phys Rev. 2010;A81:051127.Google Scholar
  7. 7.
    Breuer H-P, Petruccione F. The theory of open quantum systems. Oxford: Oxford University Press; 2002.Google Scholar
  8. 8.
    Zurek WH. Decoherence, einselection, and the quantum origins of the classical. Rev Mod Phys. 2003;75:715.CrossRefGoogle Scholar
  9. 9.
    Zurek WH. Environment-induced superselection rules. Phys Rev. 1982;D26:1862.Google Scholar
  10. 10.
    Hornberger K. Introduction to decoherence theory. Lect Notes Phys. 2009;768:221.CrossRefGoogle Scholar
  11. 11.
    Zurek WH. Environment-induced superselection rules. Phys Rev. 1982;D26:1862–80.Google Scholar
  12. 12.
    Zurek WH. Decoherence, einselection, and the quantum origins of the classical. Rev Mod Phys. 2003;75:715–75.CrossRefGoogle Scholar
  13. 13.
    Zurek WH, Habib S, Paz JP. Coherent states via decoherence. Phys Rev Lett. 1993;70:1187.CrossRefGoogle Scholar
  14. 14.
    Eisert J. Exact decoherence to pointer states in free open quantum systems is universal. Phys Rev Lett. 2004;92:210401.CrossRefGoogle Scholar
  15. 15.
    Qureshi T. Decoherence, time scales and pointer states. Physica A. 2012;391:2286–90.CrossRefGoogle Scholar
  16. 16.
    Paz JP, Zurek WH. Quantum limit of decoherence: environment induced superselection of energy eigenstates. Phys Rev Lett. 1999;82:5181.CrossRefGoogle Scholar
  17. 17.
    Ollivier H, Poulin D, Zurek WH. Objective properties from subjective quantum states: environment as a witness. Phys Rev Lett. 2004;93:220401.CrossRefGoogle Scholar
  18. 18.
    Aharonov Y, Vaidman L. Measurement of the Schrodinger wave of a single particle. Phys Lett. 1993;A178:38.CrossRefGoogle Scholar
  19. 19.
    Aharonov Y, Anandan J, Vaidman L. Meaning of the wave function. Phys Rev. 1993;A47:4616.CrossRefGoogle Scholar
  20. 20.
    Vaidman L. Protective measurements. In: Greenberger D, Hentschel K, Weinert F, editors. Compendium of quantum physics: concepts, experiments, history and philosophy. Berlin/Heidelberg: Springer; 2009.Google Scholar
  21. 21.
    Hari Dass ND, Qureshi T. Critique of protective measurements. Phys Rev. 1999;A59:2590–601.CrossRefGoogle Scholar
  22. 22.
    Qureshi T, Hari Dass ND. Protective measurements: probing single quantum systems. Curr Sci. 2015;109:2023.CrossRefGoogle Scholar
  23. 23.
    Schlosshauer M. State disturbance and pointer shift in protective quantum measurements. Phys Rev. 2014;A90:052106.CrossRefGoogle Scholar
  24. 24.
    Gao S, editor. Protective measurement and quantum reality. Cambridge: Cambridge University Press; 2015.Google Scholar
  25. 25.
    Schlosshauer M. Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev Mod Phys. 2004;76:1267.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Centre for Theoretical PhysicsJamia Millia IslamiaNew DelhiIndia

Personalised recommendations