Skip to main content

Nonlinear Control of a Variable Speed Wind Energy Conversion System Based PMSG

  • Chapter
  • First Online:
Modeling, Identification and Control Methods in Renewable Energy Systems

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

In this chapter, we present a control system for a variable speed wind turbine based direct-drive permanent magnet synchronous generator. In order to capture the optimal power from the wind and to ensure a maximum efficiency for this system, nonlinear control laws namely backstepping controller and sliding mode controller have been synthesized. Moreover, a blade pitch angle controller has been introduced above rated wind speed to keep the generated power at the designed limit. Finally, to avoid the power fluctuation, the transition between the two control regions has been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abulanwar, S., Hu, W., Chen, Z., & Iov, F. (2016). Adaptive voltage control strategy for variable-speed wind turbine connected to a weak network. IET Renewable Power Generation, 10(2), 238–249.

    Article  Google Scholar 

  • Ayadi, M., & Derbel, N. (2017). Nonlinear adaptive backstepping control for variable-speed wind energy conversion system-based permanent magnet synchronous generator. The International Journal of Advanced Manufacturing Technology, 1–8.

    Google Scholar 

  • Ayadi, M., Ben Salem, F., & Derbel, N. (2017). Power control of a variable speed wind turbine based on direct torque control of a permanent magnet synchronous generator. International Journal of Digital Signals and Smart Systems, 1(3), 204–223.

    Article  Google Scholar 

  • Bahraminejad, B., Iranpour, M. R., & Esfandiari, E. (2014). Pitch control of wind turbines using IT2FL controller versus T1FL controller. International Journal of Renewable Energy Research (IJRER), 4(4), 1065–1077.

    Google Scholar 

  • Bull, S. R. (2001). Renewable energy today and tomorrow. Proceedings of the IEEE, 89(8), 1216–1226.

    Article  Google Scholar 

  • Burton, T., Jenkins, N., Sharpe, D., & Bossanyi, E. (2011). Wind energy handbook (2nd ed.), John Wiley & Sons.

    Book  Google Scholar 

  • Cai, W., Fulton, D., & Reichert, K. (2000). Design of permanent magnet motors with low torque ripples: A review. International Conference on Electrical Machines (pp. 1384–1388).

    Google Scholar 

  • Evangelista, C., Puleston, P., Valenciaga, F., & Fridman, L. M. (2013). Lyapunov-designed super-twisting sliding mode control for wind energy conversion optimization. IEEE Transactions on Industrial Electronics, 60(2), 538–545.

    Article  Google Scholar 

  • Feng, Y., Chen, B., Yu, X., & Yang, Y. (2012). Terminal sliding mode control of induction generator for wind energy conversion systems. In IECON 2012: 38th Annual Conference on IEEE Industrial Electronics Society (pp. 4741–4746). IEEE.

    Google Scholar 

  • Hwas, A., & Katebi, R. (2012). Wind turbine control using PI pitch angle controller. IFAC Proceedings Volumes, 45(3), 241–246.

    Article  Google Scholar 

  • Jerbi, L., Krichen, L., & Ouali, A. (2009). A fuzzy logic supervisor for active and reactive power control of a variable speed wind energy conversion system associated to a flywheel storage system. Electric Power Systems Research, 79(6), 919–925.

    Article  Google Scholar 

  • Kachroo, P., & Tomizuka, M. (1996). Chattering reduction and error convergence in the sliding-mode control of a class of nonlinear systems. IEEE Transactions on Automatic Control, 41(7), 1063–1068.

    Article  MathSciNet  Google Scholar 

  • Karabacak, M., & Eskikurt, H. I. (2012). Design, modelling and simulation of a new nonlinear and full adaptive backstepping speed tracking controller for uncertain PMSM. Applied Mathematical Modelling, 36(11), 5199–5213.

    Article  MathSciNet  Google Scholar 

  • Kesraoui, M., Korichi, N., & Belkadi, A. (2011). Maximum power point tracker of wind energy conversion system. Renewable energy, 36(10), 2655–2662.

    Article  Google Scholar 

  • Kim, H.-W., Kim, S.-S., & Ko, H.-S. (2010). Modeling and control of PMSG-based variable-speed wind turbine. Electric Power Systems Research, 80(1), 46–52.

    Article  Google Scholar 

  • Lee, S.-H., Joo, Y.-J., Back, J., and Seo, J. H. (2010). Sliding mode controller for torque and pitch control of wind power system based on pmsg. In IEEE International Conference on Control Automation and Systems (ICCAS) (pp. 1079–1084).

    Google Scholar 

  • Lescher, F., Zhao, J. Y., & Borne, P. (2005). Robust gain scheduling controller for pitch regulated variable speed wind turbine. Studies in Informatics and Control, 14(4), 299.

    Google Scholar 

  • Mansour, M., Mansouri, M., & Mmimouni, M. (2011). Study and control of a variable-speed wind-energy system connected to the grid. International Journal of Renewable Energy Research, 1(2), 96–104.

    Google Scholar 

  • Michalke, G., Hansen, A. D., & Hartkopf, T. (2007). Control strategy of a variable speed wind turbine with multipole permanent magnet synchronous generator. In European Wind Energy Conference and Exhibition.

    Google Scholar 

  • Pao, L. Y. & Johnson, K. E. (2009). A tutorial on the dynamics and control of wind turbines and wind farms. In IEEE American Control Conference, ACC’09 (pp. 2076–2089).

    Google Scholar 

  • Ribrant, J., & Bertling, L. (2007). Survey of failures in wind power systems with focus on swedish wind power plants during 1997–2005. In Power Engineering Society General Meeting. IEEE, (pp. 1–8). IEEE.

    Google Scholar 

  • Rocha, R., Filho, L. S. M. (2003). A multivariable H ∞ control for wind energy conversion system. In IEEE Conference on Control Applications, CCA (pp. 206–211).

    Google Scholar 

  • Simoes, M. G., Bose, B. K., Spiegel, R. J. (1997). Fuzzy logic based intelligent control of a variable speed cage machine wind generation system. IEEE Transactions on Power Electronics, 12(1), 87–95.

    Article  Google Scholar 

  • Stol, K., Rigney, B., & Balas, M. (2000). Disturbance accommodating control of a variable-speed turbine using a symbolic dynamics structural model. In 2000 ASME Wind Energy Symposium (p. 29).

    Google Scholar 

  • Stol, K. A., Balas, M. J., et al. (2003). Periodic disturbance accommodating control for blade load mitigation in wind turbines. Transactions-American Society of Mechanical Engineers Journal of Solar Energy Engineering, 125(4), 379–385.

    Article  Google Scholar 

  • Valenciaga, F., & Puleston, P. (2008). High-order sliding control for a wind energy conversion system based on a permanent magnet synchronous generator. IEEE Transactions on Energy Conversion, 23(3), 860–867.

    Article  Google Scholar 

  • Vu, N. T.-T., Yu, D.-Y., Choi, H. H., & Jung, J.-W. (2013). T–S fuzzy-model-based sliding-mode control for surface-mounted permanent-magnet synchronous motors considering uncertainties. IEEE Transactions on Industrial Electronics, 60(10), 4281–4291.

    Article  Google Scholar 

  • Wang, G.-D., Wai, R.-J., & Liao, Y. (2013). Design of backstepping power control for grid-side converter of voltage source converter-based high-voltage DC wind power generation system. IET Renewable Power Generation, 7(2), 118–133.

    Article  Google Scholar 

  • Yang, F., Li, S.-S., Wang, L., Zuo, S., & Song, Q.-W. (2014a). Adaptive backstepping control based on floating offshore high temperature superconductor generator for wind turbines. In Abstract and applied analysis. Hindawi Publishing Corporation.

    Google Scholar 

  • Yang, W., Tavner, P. J., Crabtree, C. J., Feng, Y., & Qiu, Y. (2014b). Wind turbine condition monitoring: Technical and commercial challenges. Wind Energy, 17(5), 673–693.

    Article  Google Scholar 

  • Zhang, X., Sun, L., Zhao, K., & Sun, L. (2013). Nonlinear speed control for PMSM system using sliding-mode control and disturbance compensation techniques. IEEE Transactions on Power Electronics, 28(3), 1358–1365.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marwa Ayadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ayadi, M., Derbel, N. (2019). Nonlinear Control of a Variable Speed Wind Energy Conversion System Based PMSG. In: Derbel, N., Zhu, Q. (eds) Modeling, Identification and Control Methods in Renewable Energy Systems. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-1945-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1945-7_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1944-0

  • Online ISBN: 978-981-13-1945-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics