Skip to main content

A Comprehensive Comparison of Two Behavior MPPT Techniques, the Conventional (Incremental Conductance (INC)) and Intelligent (Fuzzy Logic Controller (FLC)) for Photovoltaic Systems

  • Chapter
  • First Online:
Modeling, Identification and Control Methods in Renewable Energy Systems

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

This chapter presents a detailed procedure to study and discuss the behavior of different maximum power point tracking (MPPT) techniques applied to PV systems. In this work, we presented a review on the state-of-the-art of photovoltaic System, DC/DC converter and power point tracking techniques such as conventional one incremental conductance (INC) and soft computing method fuzzy logic controller (FLC) are evaluated. The simulation results obtained are developed under software MATLAB/Simulink. Both methods (INC) and (FLC) are used with a boost DC/DC converter and a load. These results show that the fuzzy logic controller is better and faster than the conventional incremental conductance (INC) technique in both dynamic response and steady state in normal operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbes, H., Abid, H., Loukil, K., Toumi, A., & Abid, M. (2014). Etude comparative de cinq algorithmes de commande MPPT pour un système Photovoltaique. Revue des Energies Renouvelables, 17(3), 435–445.

    Google Scholar 

  • Abdelhak, B., & Boubaker, A. (2014). Contribution à l’optimisation d’une chaine de conversion d’énergie Photovoltaique. Ph.D. thesis, Universite de Constantine.

    Google Scholar 

  • Amarouayache, M. (2014). Contribution à l’optimisation d’une chaine de conversion d’énergie Photovoltaique. Ph.D. thesis, Constantine 1 University.

    Google Scholar 

  • Azab, M. (2008). A new maximum power point tracking for photovoltaic systems. World Academy of Science, Engineering and Technology. International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, 2(8).

    Google Scholar 

  • Carrero, C., Amador, J., & Arnaltes, S. (2007). A single procedure for helping PV designers to select silicon PV module and evaluate the loss resistances. Renewable Energy, 32(15), 2579–2589.

    Article  Google Scholar 

  • Eltamaly, A. M. (2010). Modeling of fuzzy logic controller for photovoltaic maximum power point tracker. In Solar Future 2010 Conference Proceedings (pp. 4–9), Istanbul, Feb 2010.

    Google Scholar 

  • Eltamaly, A. M., Alolah, A. I., & Abdulghany, M. Y. (2010). Digital implementation of general purpose fuzzy logic controller for photovoltaic maximum power point tracker. In Power Electronics Electrical Drives Automation and Motion (SPEEDAM), International Symposium on Digital Object Identifier (pp. 622–627).

    Google Scholar 

  • Gow, J. A., & Manning, C. D. (1999). Development of a photovoltaic array model for use in power-electronics simulation studies. IEE Proceedings Electric Power Applications, 146(2), 193–200.

    Article  Google Scholar 

  • Hyvarinen, J., & Karila, J. (2003). New analysis method for crystalline silicon cells. In Proceedings of 3rd World Conference on Photovoltaic Energy Conversion (Vol. 2, pp. 1521–1524).

    Google Scholar 

  • Kanji, B., (2012). Intelligent techniques for the tracking of the maximum power point of a supervised photovoltaic system. MA thesis, Lebanese University.

    Google Scholar 

  • Koutroulis, E., Kalaitzakis, K., & Tzitzilonis, V. (2008). Development of a FPGA-based system for real-time simulation of photovoltaic modules. Microelectronics Journal, 40(7), 1094–1102.

    Article  Google Scholar 

  • Moller, H. J. (1993). Semiconductors for solar cells. Norwood: Artech House.

    Google Scholar 

  • Naffouti, S. E. (2012). Dimensionnement et commande d’un hacheur parallèle alimenté par une source Photovoltaique. M.S. thesis, University of Burgundy, France.

    Google Scholar 

  • Nishioka, K., Sakitani, N., Uraoka, Y., & Fuyuki, T. (2007). Analysis of multicrystalline silicon solar cells by modified 3-diode equivalent circuit model taking leakage current through periphery into consideration. Solar Energy Materials and Solar Cells, 91(13), 1222–1227.

    Article  Google Scholar 

  • Rauschenbach, H. S. (1980). Solar cell array design handbook. New York: Van Nostrand Reinhold.

    Book  Google Scholar 

  • Rezaee Jordehi, A. (2016). Maximum power point tracking in photovoltaic (PV) systems: A review of different approaches. Renewable and Sustainable Energy Reviews, 65, 1127–1138.

    Article  Google Scholar 

  • Rezk, H., & Eltamaly, A. M. (2015). A comprehensive comparison of different MPPT techniques for photovoltaic systems. Solar Energy, 112, 1–11.

    Article  Google Scholar 

  • Reza Reisi, A., Moradi, M.H., & Jamasb, S. (2013). Classification and comparison of maximum power point tracking techniques for photovoltaic system: A review. Renewable and Sustainable Energy Reviews 19, 433–443.

    Article  Google Scholar 

  • Salas, V., Olias, E., Barrado, A., & Lazaro, A. (2006). Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems. Solar Energy Materials and Solar Cells, 90(11), 1555–1578.

    Article  Google Scholar 

  • Sedra, A. S., & Smith, K. C. (2006). Microelectronic circuits. London: Oxford University Press.

    Google Scholar 

  • Seyedmahmoudian, M., Horan, B., Kok Soon, T., Rahmani, R., Thango, A. M., Mekhilef S., & Stojcevskiet, A. (2016). State of the art artificial intelligence-based MPPT techniques for mitigating partial shading effects on PV systems-a review. Renewable and Sustainable Energy Reviews, 64, 435–455.

    Article  Google Scholar 

  • Verma, D., Nema, S., Shandilya, A. M., & Dash, S. K. (2016). Maximum power point tracking (MPPT) techniques: Recapitulation in solar photovoltaic systems. Renewable and Sustainable Energy Reviews, 54, 1018–1034.

    Article  Google Scholar 

  • Villalva, M. G., Gazoli, J. R., & Ruppert Filho, E. (2009). Comprehensive approach to modeling and simulation of photovoltaic arrays. IEEE Transactions on Power Electronics, 24(5), 1198–1208.

    Article  Google Scholar 

  • Xiao, W., Dunford, W. G., & Capel, A. (2004). A novel modeling method for photovoltaic cells. In Proceedings of IEEE 35th Annual Power Electronics Specialists Conference (PESC) (Vol. 3, pp. 1950–1956).

    Google Scholar 

  • Yi-Bo, W., Chun-Sheng, W., Hua, L., & Hong-Hua, X. (2008). Steady-state model and power flow analysis of grid-connected photovoltaic power system. In IEEE International Conference on Industrial Technology, ICIT 2008 (pp. 1–6).

    Google Scholar 

  • Zainudin, H. N., & Mekhilef, S. (Dec 2010). Comparison study of maximum power point tracker techniques for PV systems. In 14th Middle East Power Systems Conference, Mepcon’10, Cairo University.

    Google Scholar 

  • Zagroubaa, M., Bouaïchaa, M., Sellamia, A., & Ksouric, M., et al. (2010). Optimisation par les Algorithmes Genetiques et modélisation par la méthode LPV d’un systéme photovoltaique. Vème Congrès Int. sur les Energies Renouvelables et l’Environnement, 4–6 Novembre, Sousse.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ibnelouad, A., Kari, A.E., Ayad, H., Mjahed, M. (2019). A Comprehensive Comparison of Two Behavior MPPT Techniques, the Conventional (Incremental Conductance (INC)) and Intelligent (Fuzzy Logic Controller (FLC)) for Photovoltaic Systems. In: Derbel, N., Zhu, Q. (eds) Modeling, Identification and Control Methods in Renewable Energy Systems. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-1945-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1945-7_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1944-0

  • Online ISBN: 978-981-13-1945-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics