Skip to main content

Exploring Structure Oriented Feature Tag Weighting Algorithm for Web Documents Identification

  • Conference paper
  • First Online:
Soft Computing Systems (ICSCS 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 837))

Included in the following conference series:

Abstract

There are various ways of web page classification but they take higher time to compute with lesser accuracy. Hence, there is a need to invent an efficient algorithm in order to reduce time and increase web page classification result. It is generally find that a few tags like title can contain the principle substance of text, and these patterns may have an impact on the adequacy of text classification. Although, the most widely recognized text weighting calculations, called term frequency inverse documents frequency (TF-IDF) doesn’t consider the structure of website pages. To take care of this issue, another feature tags weighting calculation is put in advanced. It thinks about the web page structure data like title, Meta tags, head etc. also content the useful information. In this proposed study first web site pages data are pre-processed and find text weight using TFIDF, after that using feature tag weighting calculation, frequent and important tags will find; then on the basis of text weight and tags weight, web document will classify.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sadegh, A.H., Hossein, R., Behroo, N.: Web page classification using social tag. In: IEEE International Conference on Computational Science and Engineering, vol. 4, no. 1, pp. 588–593 (2009)

    Google Scholar 

  2. Jain, A., Sharma, R., Dixit, G., Tomar, V.: Page ranking algorithms in web mining, limitations of existing methods and a new method for indexing web pages. In: International Conference on Communication Systems and Network Technologies, vol. 3, no. 1, pp. 640–645. IEEE (2013)

    Google Scholar 

  3. Gowri, R., Lavanya, R.: A novel classification of web service composition and optimization approach using skyline algorithm integrated with agents. In: IEEE Computational Intelligence and Computing Research (ICCIC), pp. 26–28 (2013)

    Google Scholar 

  4. Tomar, G.S., Verma, S., Jha, A.: Web page classification using modified naïve bayesian approach. In: IEEE TENCON 2006, Hong Kong, pp. 14–17 (2006)

    Google Scholar 

  5. Kejing, H., Henyang, C.: Structure-based classification of web documents using support vector machine. In: Proceedings of CCIS 2016, pp. 215–219. IEEE (2016)

    Google Scholar 

  6. Jose, J., Lal, P.S.: A rough set approach to identify content and navigational pages at a website, pp. 5–9. IEEE (2008)

    Google Scholar 

  7. Kang, J., Choi, J.: Block classification of a web page by using a combination of multiple classifiers. In: IEEE Networked Computing and Advanced Information Management, vol. 2, no. 1, pp. 290–295 (2008)

    Google Scholar 

  8. Keller, M., Hartenstein, H.: GRABEX: a graph-based method for web site block classification and its application on mining breadcrumb trails. In: WIC/ACM International Conferences on Web Intelligence (WI) and Intelligent Agent Technology (IAT), pp. 290–297. IEEE (2013)

    Google Scholar 

  9. Kovacevic, M., Diligenti, M., Gori, M., Milutinovic, V.: Recognition of common areas in a web page using visual information: a possible application in a page classification. In: IEEE Data Mining, pp. 250–257 (2002)

    Google Scholar 

  10. Ryan, L., Michal, C., Lei, Y.: Using visual features for fine-grained genre classification of web pages. In: Proceedings of the 41st Annual IEEE Hawaii International Conference on System Sciences, vol. 1, no. 10, pp. 7–10 (2008)

    Google Scholar 

  11. Mun, Y., Lee, M., Cho, D.: Classification of web link information and implementation of dynamic web page using Link Map System. In: IEEE Granular Computing, pp. 26–28 (2008)

    Google Scholar 

  12. Qian, Q., Li, J., Cai, J., Zhang, R., Xin, M.: An anomaly intrusion detection method based on PageRank algorithm. In: International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, pp. 2226–2230. IEEE (2013)

    Google Scholar 

  13. Dushyant, R.: A review on web mining. Int. J. Eng. Res. Technol. (IJERT) (2012)

    Google Scholar 

  14. Sarac, E., Ozel, S.A.: Web page classification using firefly optimization. In: IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA) (2013)

    Google Scholar 

  15. Ye, F., Zhang, F., Luo, X., Xu, L.: Research on measuring semantic correlation based on the Wikipedia hyperlink network, pp. 309–314. IEEE (2013)

    Google Scholar 

  16. Zou, J.Q., Chen, G.L., Guo, W.Z.: Chinese web page classification using no se-tolerant up port vector machines. In: Natural Language Processing and Knowledge Engineering, IEEE NLP-KE, pp. 785–790 (2005)

    Google Scholar 

  17. Sinka, M.P., Corne, D.W.: BankSearch dataset (2005). http://www.pedal.reading.ac.uk/bansearchdataset/

  18. Lu, Y., Peng, Y.: Feature weighting improvement of web text categorization based on particle swarm optimization algorithm. J. Comput. 10(1), 260–269 (2006)

    Google Scholar 

  19. Chen, G., Choi, B.: Web page genre classification. In: Proceedings of the ACM Symposium on Applied Computing, pp. 2353–2357 (2008)

    Google Scholar 

  20. Abramson, M., Aha, D.M.: What’s in a URL? Genre classification from URL. In: Workshops at the 26th Advancement of Artificial Intelligence (AAAI) Conference on Artificial Intelligence, pp. 1–8 (2012)

    Google Scholar 

  21. Zhu, J., Xie, Q., Yu, S.I., Wong, W.H.: Exploiting link structure for web page genre identification. Data Min. Knowl. Discov. 1–26 (2015)

    Google Scholar 

Download references

Acknowledgements

I would like to thank all the people those who helped me to give the knowledge about these research papers. I am thankful to Dr. Prateek Srivastava & Dr. Prasun Chakrabarti to encourage and guided in this topic which helped me to speed up the work for structure based web page classification for fast search. Finally, I like to acknowledge all the websites and IEEE papers which I have gone through and referred to create this research paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karunendra Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Verma, K., Srivastava, P., Chakrabarti, P. (2018). Exploring Structure Oriented Feature Tag Weighting Algorithm for Web Documents Identification. In: Zelinka, I., Senkerik, R., Panda, G., Lekshmi Kanthan, P. (eds) Soft Computing Systems. ICSCS 2018. Communications in Computer and Information Science, vol 837. Springer, Singapore. https://doi.org/10.1007/978-981-13-1936-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1936-5_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1935-8

  • Online ISBN: 978-981-13-1936-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics