Skip to main content

Food Enzymes in Pharmaceutical Industry: Perspectives and Limitations

  • Chapter
  • First Online:
Enzymes in Food Technology

Abstract

Enzymes are the chemical compounds which act as a biological catalyst and alter the rate of biochemical reactions. There are about 3000 enzymes in our bodies which are involved in more than 7000 metabolic reactions. Considering the physiological and metabolic significance of the enzymes, food enzymes constitute an important part of diet. There are some enzyme-rich foods that are believed to have a different function in the human body than that of body’s own enzymes. But, processing and cooking of foods completely degrade the enzyme contents and leave the body deprived of these important enzymes which play a significant role in the well-being and healthcare. Some prominent examples of high enzyme foods are papaya, pineapple, banana, figs, and bee pollen. The sprouts are metabolically very active, and the content of enzymes is more as compared to seeds. The dietary enzymes commonly present in the enzyme-rich foods are proteinases, amylases, maltases, lipases, papain, bromelain, etc. Non-processed and uncooked foods are rich in enzymes, and their intake might decrease the body’s burden to produce more and more of its own enzymes. As a result of some metabolic disorders and diseases, the production of some specific enzymes is hampered in the body. In such cases, foods which are high in enzyme contents are the best choice for the extraction, purification, and commercialization of the enzymes. These enzymes find numerous applications in pharmaceutical industries, and there is a need for exploiting these foods for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACE:

Angiotensin-converting enzyme

AKP:

Apricot kernel protein

BSA:

Bovine serum albumin

EAT:

Ehrlich ascitic tumor

EC:

Enzyme commission number

ELISA:

Enzyme-linked immunosorbent assay

GE:

Gastric emptying rate

GP:

Ginger protease

HAase:

Hyaluronidase

HPLC:

High-performance liquid chromatography

LLC:

Lewis lung carcinoma

LOX:

Lipoxygenase

NEM:

N-ethyl maleimide

PG:

Polygalacturonase

PME:

Pectin methyl esterase

POD:

Peroxidase

PPO:

Polyphenol oxidase

SPI:

Soy protein isolates

TLP:

Thaumatin-like protein

References

  • Ali AA, Milala MA, Gulani IA (2015) Antimicrobial effects of crude bromelain extracted from pineapple fruit (Ananas comosus (Linn.) Merr.). Adv Biochem 3:1–4

    Article  CAS  Google Scholar 

  • Amri E, Mamboya F (2012) Papain, a plant enzyme of biological importance: a review. Am J Biochem Biotechnol 8:94–104

    Google Scholar 

  • Archer MC, Palmer JK (1975) An experiment in enzyme characterization: banana polyphenol oxidase. Biochem Educ 3:50–52

    Article  CAS  Google Scholar 

  • Baez R, Lopes MT, Salas CE et al (2007) In-vivo antitumoral activity of stem pineapple (Ananas comosus) bromelain. Planta Med 73:1377–1383

    Article  CAS  PubMed  Google Scholar 

  • Balls AK, Lineweaver H (1939) Isolation and properties of crystalline papain. J Biol Z Chem 130:669–686

    CAS  Google Scholar 

  • Balls AK, Lineweaver H, Thompson RR (1937) Crystalline papain. Science 86:379

    Article  CAS  PubMed  Google Scholar 

  • Barreit DM, Gonzalez C (1994) Activity of softening enzymes during cherry maturation. J Food Sci 59:574–577

    Article  Google Scholar 

  • Bergmann M, Fruton JS (1941) The specificity of proteinases. Adv Enzymol 1:63–98

    CAS  Google Scholar 

  • Borowitz D, Stevens C, Brettman LR (2011) Liprotamase 726 Study Group International phase III trial of liprotamase efficacy and safety in pancreatic-insufficient cystic fibrosis patients. J Cyst Fibros 10:443–452

    Article  CAS  PubMed  Google Scholar 

  • Boshra V, Tajul AY (2013) Papaya – an innovative raw material for food and pharmaceutical processing industry. Health Environ J 4:68–75

    Google Scholar 

  • Brien S, Lewith G, Walker A et al (2004) Bromelain as a treatment for osteoarthritis: a review of clinical studies. Evid Based Complement Alternat Med 1:251–257

    Article  PubMed  PubMed Central  Google Scholar 

  • Chevalier T, de Rigal D, Mbéguié-A-Mbéguié D et al (1999) Molecular cloning and characterization of apricot fruit polyphenol oxidase. Plant Physiol 119:1261–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domínguez-Muñoz JE (2007) Pancreatic enzyme therapy for pancreatic exocrine insufficiency. Curr Gastroenterol Rep 9:116–122

    Article  PubMed  Google Scholar 

  • Elgadiri MA, Salama M, Adam A (2014) Carica papaya as a source of natural medicine and its utilization in selected pharmaceutical applications. Int J Pharm Pharm Sci 6:868–871

    Google Scholar 

  • Fante L, Norena CPZ (2012) Enzyme inactivation kinetics and colour changes in garlic (Allium sativum L.) blanched under different conditions. J Food Eng 108:436–443

    Article  CAS  Google Scholar 

  • Felton GE (1980) Fibrinolytic and antithrombotic action of bromelain may eliminate thrombosis in heart patients. Med Hypotheses 6:1123–1133

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, Schaffer AA (1999) A novel alkaline α-galactosidase from melon fruit with a substrate preference for raffinose. Plant Physiol 119:979–988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glaser D, Hilberg T (2006) The influence of bromelain on platelet count and platelet activity in vitro. Platelets 17:37–41

    Article  PubMed  CAS  Google Scholar 

  • Gurung S, Skalko-Basnet N (2009) Wound healing properties of Carica papaya latex: invivo evaluation in mice burn model. J Ethnopharmacol 121:338–341

    Article  CAS  PubMed  Google Scholar 

  • Ha M, Bekhit AE-D, Carne A et al (2013) Characterisation of kiwifruit and asparagus enzyme extracts, and their activities toward meat proteins. Food Chem 136:989–998

    Article  CAS  PubMed  Google Scholar 

  • Hale LP, Paula KG, Chau TT, Cindy LJ (2005) Proteinase activity and stability of natural bromelain preparations. Int Immunopharmacol 5:783–793

    Article  CAS  PubMed  Google Scholar 

  • Hewitt H, Wint Y, Talabere L et al (2002) The use of papaya on pressure ulcers. A Nat Altern Am J Nurs 102:73–77

    Google Scholar 

  • Hitesh P, Manojbhai BN, Mayuri BA et al (2012) Extraction and application of papain enzyme on degradation of drug. IJPBS 2:113–115

    Google Scholar 

  • Howell E (1985) Enzyme nutrition: the food enzyme concept. Avery Publishing Group, Wayne

    Google Scholar 

  • Hwang K, Ivy AC (1951) A Review of the literature on the potential therapeutic significance of papain. Ann N Y Acad Sci 54:161–207

    Article  CAS  PubMed  Google Scholar 

  • Imrie CW, Connett G, Hall RI et al (2010) Review article: enzyme supplementation in cystic fibrosis, chronic pancreatitis, pancreatic and periampullary cancer. Aliment Pharmacol Ther 32:1–25

    Article  CAS  PubMed  Google Scholar 

  • Jansen EF, Balls AK (1941) Chymopapain: a new crystalline proteinase from papaya latex. J Biol Chem 137:459

    CAS  Google Scholar 

  • Kaleef R, Delohery TM, Bovbjerg DH (1996) Selective modulation of cell adhesion molecules on lymphocytes by bromelain protease 5. Pathobiology 64:339–346

    Article  Google Scholar 

  • Kanabar D, Randhawa M, Clayton P (2001) Improvement of symptoms in infant colic following reduction of lactose load with lactase. J Hum Nutr Diet 14:359–363

    Article  CAS  PubMed  Google Scholar 

  • Kanellis AK, Solomos T, Mattoo AK (1989) Hydrolytic enzyme activities and protein pattern of avocado fruit ripened in air and in low oxygen, with and without ethylene. Plant Physiol 90:257–266

    Google Scholar 

  • Kaur L, Boland M (2013) Influence of kiwifruit on protein digestion. Adv Food Nutr Res 68:149–167

    Article  PubMed  Google Scholar 

  • Kaur L, Rutherfurd SM, Moughan PJ et al (2010) Actinidin enhances gastric protein digestion as assessed using an in vitro gastric digestion model. J Agric Food Chem 58:5068–5073

    Article  CAS  PubMed  Google Scholar 

  • Kaye AD, Baluch A, Kaye AM (2012) Mineral, vitamin, and herbal supplements. In: Anesthesia and uncommon diseases, 6th edn. Elsevier Saunders, Philadelphia, pp 470–487

    Chapter  Google Scholar 

  • Kimmel JR, Smith EL (1954) Crystalline papain preparation, specificity, and activation. J Biol Chem 207:515–531

    CAS  PubMed  Google Scholar 

  • Krishnamoorthi R, Gong Y, Richardson M (1990) A new protein inhibitor of trypsin and activated Hageman factor from pumpkin (Cucurbita maxima) seeds. FEBS Lett 273:163–167

    Article  CAS  PubMed  Google Scholar 

  • Kumakura S, Tsurufuji S, Yamashita M (1988) Effect of bromelain on kaolin-induced inflammation in rats. Eur J Pharmacol 150:295–301

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Sharma US, Rao CV (2010) Experimental evaluation of Ficus racemosa Linn. fruits extract on gastric ulceration. Int J Pharm Sci Rev Res 4:89–92

    CAS  Google Scholar 

  • Kumar JA, Kumar GA, Ruchi J (2017) Int J Ayur Pharma Res 5:40–42

    CAS  Google Scholar 

  • Lantto R, Plathin P, Niemisto M et al (2006) Effects of transglutaminase, tyrosinase and freeze-dried apple pomace powder on gel forming and structure of pork meat. LWT- Food Sci Technol 39:1117–1124

    Article  CAS  Google Scholar 

  • Lashley D, Wiley RC (1979) A betacyanine decolorizing enzyme found in red beet tissue. J Food Sci 44:1568–1569

    Article  CAS  Google Scholar 

  • Lee CY, Smith NL, Hawbecker DE (1988) Enzyme activity and quality of frozen green beans as affected by blanching and storage. J Food Qual 11:279–287

    Article  Google Scholar 

  • Lin MY, Dipalma JA, Martini MC et al (1993) Comparative effects of exogenous lactase (beta-galactosidase) preparations on in vivo lactose digestion. Dig Dis Sci 38:2022–2027

    Article  CAS  PubMed  Google Scholar 

  • Lotz-Winter H (1990) on the pharmacology of bromelain: an update with special regard to animal studies on dose-dependent effects. Planta Med 56:249–253

    Article  CAS  PubMed  Google Scholar 

  • Ludikhuyze L, Rodrigo L, Hendrickx M (2000) The activity of myrosinase from broccoli (Brassica oleracea L. cv. Italica): influence of intrinsic and extrinsic factors. J Food Prot 63:400–403

    Article  CAS  PubMed  Google Scholar 

  • Mackay DAM, Hewitt EJ (1959) Application of flavor enzymes to processed foods ii. Comparison of the effect of flavor enzymes from mustard and cabbage upon dehydrated cabbage. J Food Sci 24:253–261

    Article  CAS  Google Scholar 

  • Maddumage R, Nieuwenhuizen NJ, Bulley SM et al (2013) Diversity and relative levels of actinidin, kiwellin, and thaumatin like allergens in 15 varieties of kiwifruit (Actinidia). J Agric Food Chem 61:728–739

    Article  CAS  PubMed  Google Scholar 

  • Majima M, Nishiyama K, Iguchi Y et al (1996) Determination of bradykinin-(1-5) in inflammatory exudate by a new ELISA as a reliable indicator of bradykinin generation. Inflamm Res 45:416–423

    Article  CAS  PubMed  Google Scholar 

  • Majima M, Kawashima N, Hiroshi I et al (1997) Effects of an orally active non-peptide bradykinin B2 receptor antagonist, FR173657, on plasma exudation in rat carrageenan induced pleurisy. Br J Pharmacol 121:723–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mashayekhi K, Chiane SM, Mianabadi M et al (2016) Change in carbohydrate and enzymes from harvest to sprouting in garlic. Food Sci Nutr 4:370–376

    Article  CAS  PubMed  Google Scholar 

  • Maurer HR (2001) Bromelain: biochemistry, pharmacology and medical use. CMLS 58:1234–1245

    Article  CAS  PubMed  Google Scholar 

  • Mehrnoush A, Yazid AMM (2013) Characterization of novel amylase enzyme from mango (Mangifera indica cv. Chokanan) peel. JFAE 11:47–50

    CAS  Google Scholar 

  • Miller PC, Bailey SP, Barnes ME et al (2004) The effects of protease supplementation on skeletal muscle function and DOMS following downhill running. J Sport Sci 22:365–372

    Article  Google Scholar 

  • Mitea C, Havenaar R, Drijfhout JW et al (2008) Efficient degradation of gluten by a prolyl endoprotease in a gastrointestinal model: implication for coeliac disease. Gut 57:25–32

    Article  CAS  PubMed  Google Scholar 

  • Montoya CA, Hindmarsh JP, Gonzalez L et al (2014) Dietary actinidin from kiwifruit (Actinidia deliciosa cv. Hayward) increases gastric digestion and the gastric emptying rate of several dietary proteins in growing rats. J Nutr 114:440–446

    Article  CAS  Google Scholar 

  • Mulabagal V, Lang GA, DeWitt DL et al (2009) Anthocyanin content, lipid peroxidation and cyclooxygenase enzyme inhibitory activities of sweet and sour cherries. J Agric Food Chem 57:1239–1246

    Article  CAS  PubMed  Google Scholar 

  • Nafi A, Foo HL, Jamilah B et al (2013) Properties of proteolytic enzyme from ginger (Zingiber officinale Roscoe). IFRJ 20:363–368

    CAS  Google Scholar 

  • Nwinyi OC, Anthoni AB (2010) Antifungal effects of pawpaw seed extracts and papain on postharvest Carica papaya L. fruit rot. Afr J Agric Res 5:1531–1535

    Google Scholar 

  • Ogino M, Majima M, Kawamura M et al (1996) Increased migration of neutrophils to granulocyte-colony stimulating factor in rat carrageenan induced pleurisy: roles of complement, bradykinin and inducible cyclooxygenase-2. Inflamm Res 45:335–346

    Article  CAS  PubMed  Google Scholar 

  • Olesen SS, Juel J, Graversen C et al (2013) Pharmacological pain management in chronic pancreatitis. World J Gastroenterol 19:7292–7301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Orsini RA (2006) Bromelain. Plast Reconstr Surg 118:1640–1644

    Article  CAS  PubMed  Google Scholar 

  • Otsukia N, Dangb NH, Kumagaia E et al (2010) Aqueous extract of Carica papaya leaves exhibits antitumor activity and immunomodulatory effects. J Ethnopharmacol 127:760–767

    Article  Google Scholar 

  • Owoyele BV, Adebukola OM, Funmilayo AA et al (2008) Anti-inflammatory activities of ethanolic extract of Carica papaya leaves. Inflammopharmacology 16:168–173

    Article  CAS  PubMed  Google Scholar 

  • Rakhimov MR (2000) Pharmacological study of papain from the papaya plant cultivated in Uzbekistan. Eksp Klin Farmakol 63:55–57 (in Russian)

    CAS  PubMed  Google Scholar 

  • Romm A, Clare B, Stansburry JE et al (2010a) Menstrual wellness and menstrual problems. In: Botanical medicine for women’s health. Elsevier, London, pp 97–185

    Chapter  Google Scholar 

  • Romm A, Burgess I, Winston D et al (2010b) Conditions of the reproductive organs. In: Botanical medicine for women’s health. Elsevier, London, pp 211–255

    Chapter  Google Scholar 

  • Scholsser E (2002) Fast food nation: the dark side of the all-American meal. Houghton Mifflin Company, New York, pp 13–91

    Google Scholar 

  • Sornwatana T, Roytrakul S, Wetprasit N et al (2013) Brucin, an antibacterial peptide derived from fruit protein of Fructus Bruceae, Brucea javanica (L.) Merr. Lett Appl Microbiol 57:129–136

    Article  CAS  PubMed  Google Scholar 

  • Taussig SJ, Batkin S (1988) Bromelain, the enzyme complex of pineapple (Ananas comosus) and its clinical application. An update. J Ethnopharmacol 27:191–203

    Article  Google Scholar 

  • Thompson EH, Wolf ID, Allen CE (1973) Ginger rhizome: a new source of proteolytic enzyme. J Food Sci 38:652–655

    Article  Google Scholar 

  • Troiani EP, Tropiai CT, Clemente E (2003) Peroxidase (POD) and polyphenol oxidase (PPO) in grape (Vitis vinifera L.). Cienc Agrotec 27:635–642

    Article  CAS  Google Scholar 

  • Tropical plant database Carica papaya. http://www.rain-tree.com/papaya.htm#.WaUyNfVOLVI. Accessed 5 Dec 2011

  • Uchida Y, Katori M (1986) Independent consumption of high and low molecular weight kininogens in vivo. Adv Exp Med Biol 198:113–118

    Article  PubMed  Google Scholar 

  • United States Pharmacopeia (2002) 25th revision. United States Pharmacopeial Convention Inc, Rockville

    Google Scholar 

  • Vanini LS, Kwiatkowski A, Clemente E (2010) Polyphenol oxidase and peroxidase in avocado pulp (Persea americana Mill.). Food Sci Technol Int 30:525–631

    Article  Google Scholar 

  • Vishal T, Rathore RPS, Kamble PR et al (2013) Pepsin, papain and hyaluronidase enzyme analysis: a review. IJRPS 3:1–18

    Google Scholar 

  • Wardale DA, Ambert EA (1980) Lipoxygenase from cucumber fruit: localization and properties. Phytochemistry 19:1013–1016

    Article  CAS  Google Scholar 

  • Wiera HA, Kuhnb RJ (2011) Pancreatic enzyme supplementation. Curr Opin Pediatr 23:541–544

    Article  CAS  Google Scholar 

  • Wimalawansa SJ (1981) Papaya in the treatment of chronic infected ulcers. Ceylon Med J 26:129–132

    CAS  PubMed  Google Scholar 

  • Yismaw G, Tessema B, Mulu A et al (2008) The in–vitro assessment of antibacterial effect of papaya seed extract against bacterial pathogens isolated from urine, wound and stool. Ethiop Med J 46:71–77

    PubMed  Google Scholar 

  • Yossef HD, El Beltagey AED (2014) Extraction, purification and characterization of apricot seed ß-galactosidase for producing free lactose cheese. J Nutr Food Sci 4:270

    Article  CAS  Google Scholar 

  • Zare H, Moosavi-Movahedi AA, Salami M et al (2013) Purification and autolysis of the ficin isoforms from fig (Ficus carica cv. Sabz) latex. Phytochemistry 87:16–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zengion AH, Yarnell E (2011) Herbal and nutritional supplements for painful conditions. In: Pain procedures in clinical practice, 3rd edn. Elsevier, Philadelphia, pp 187–204

    Chapter  Google Scholar 

  • Zhang B, Sun Q, Liu H-J et al (2017) Characterization of actinidin from Chinese Kiwifruit cultivars and its 1 applications in meat tenderization and production of angiotensin I-converting enzyme (ACE) inhibitory peptides. LWT-Food Sci Technol 78:1–7

    Article  CAS  Google Scholar 

  • Zhu Z, Qiu N, Yi J (2010) Production and characterization of angiotensin converting enzyme (ACE) inhibitory peptides from apricot (Prunus armeniaca L.) kernel protein hydrolysate. Eur Food Res Technol 231:13–19

    Article  CAS  Google Scholar 

  • Zubarik R, Ganguly E (2011) The Rosemont criteria can predict the pain response to pancreatic enzyme supplementation in patients with suspected chronic pancreatitis undergoing endoscopic ultrasound. Gut Liver 5:521–526

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iffat Zareen Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmad, I.Z., Tabassum, H., Ahmad, A., Kuddus, M. (2018). Food Enzymes in Pharmaceutical Industry: Perspectives and Limitations. In: Kuddus, M. (eds) Enzymes in Food Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-1933-4_3

Download citation

Publish with us

Policies and ethics