Skip to main content

Enzymes in Bioconversion and Food Processing

  • Chapter
  • First Online:

Abstract

Enzymes are biological catalysts that can be found in every living system. It takes part in various reactions and is mainly found in plants, animals, and microorganisms. The introduction of enzymes in the food industries began with the application of chymosin, derived from the calf stomach, for the production of cheese. Since then, advances in biotechnology have paved way to the application of enzymes synthesized by recombinant microorganisms. Living organisms achieve bioconversion of a substance with the help of enzymes. Due to high substrate specificity, enzymes find applicability in baking, dairy, detergent, leather, and beverage industries. Additionally, enzymes also play a vital role in wastewater treatment, animal nutrition, paper manufacturing, and pharmaceutical and biofuel applications. Furthermore, the discovery of cellulose- and lipid-hydrolyzing enzymes along with the extensive applications of genetic engineering has provided momentum to producing alternative fuel sources from plant-based waste on a huge scale. This chapter deals with various enzymes typically applied in bioconversion and food processing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ali S, Mahmood S, Alam R et al (1989) Culture condition for production of glucoamylase from rice bran by Aspergillus terreus. MIRCEN J Appl Microbiol Biotechnol 5(4):525–532

    Article  CAS  Google Scholar 

  • Altaner C, Saake B, Tenkanen M et al (2003) Regioselective deacetylation of cellulose acetates by acetyl xylan esterases of different CE-families. J Biotechnol 105(1–2):95–104

    Article  CAS  PubMed  Google Scholar 

  • Andersen LN, Bech L, Halkier T et al (2003) Transglutaminases from oomycetes. US Patent 6428993B1 (19 Jan 1995)

    Google Scholar 

  • Aravindan R, Anbumathi P, Viruthagiri T (2007) Lipase applications in food industry. Indian J Biotechnol 6(2):141

    CAS  Google Scholar 

  • Aszalos A (1978) Classification of enzymes. Enzyme Anesth:71–88

    Google Scholar 

  • Blake C, Koenig D, Mair G et al (1965) Structure of hen egg-white lysozyme: a three-dimensional Fourier synthesis at 2 Å resolution. Nature 206(4986):757–761

    Article  CAS  PubMed  Google Scholar 

  • Bonekamp F, Oosterom J (1994) On the safety of Kluyveromyces lactis – a review. Appl Microbiol Biotechnol 41(1):1–3

    Article  Google Scholar 

  • Cai H, Li Y, Zhao M (2015) Immobilization, Regiospecificity characterization and application of Aspergillus oryzae lipase in the enzymatic synthesis of the structured lipid 1,3-Dioleoyl-2-Palmitoylglycerol. PLoS One 10(7):e0133857

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C et al (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37(suppl 1):D233–D238

    Article  CAS  PubMed  Google Scholar 

  • Cartwright AM, Lim EK, Kleanthous C et al (2008) A kinetic analysis of regiospecific glucosylation by two glycosyltransferases of Arabidopsis thaliana: domain swapping to introduce new activities. J Biol Chem 283(23):15724–15731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Celestino K, Cunha R et al (2006) Characterization of a beta-glucanase produced by Rhizopus microsporus var. microsporus, and its potential for application in the brewing industry. BMC Biochem 7(1):23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chang A, Singh S, Helmich KE et al (2011) Complete set of glycosyltransferase structures in the calicheamicin biosynthetic pathway reveals the origin of regiospecificity. Proc Natl Acad Sci 108(43):17649–17654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chauhan PS, Puri N, Sharma P et al (2012) Mannanases: microbial sources, production, properties and potential biotechnological applications. Appl Microbiol Biotechnol 93(5):1817–1830

    Article  CAS  PubMed  Google Scholar 

  • Cherry JR, Fidantsef AL (2003) Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol 14(4):438–443

    Article  CAS  PubMed  Google Scholar 

  • Chi Z, Chi Z, Zhang T et al (2009) Inulinase-expressing microorganisms and applications of inulinases. Appl Microbiol Biotechnol 82(2):211–220

    Article  CAS  PubMed  Google Scholar 

  • Christgau S, Andersen L, Kauppinen S et al (1994) Enzyme exhibiting mannanase activity. US Patent 5795764A (30 April 1993)

    Google Scholar 

  • Clarke J, Davidson K, Rixon J et al (2000) A comparison of enzyme-aided bleaching of softwood paper pulp using combinations of xylanase, mannanase and α-galactosidase. Appl Microbiol Biotechnol 53(6):661–667

    Article  CAS  PubMed  Google Scholar 

  • Collet P, Lardon L, Hélias A et al (2014) Biodiesel from microalgae–life cycle assessment and recommendations for potential improvements. Renew Energy 71:525–533

    Article  CAS  Google Scholar 

  • Cortez J, Bonner PL, Griffin M et al (2004) Application of transglutaminases in the modification of wool textiles. Enzym Microb Technol 34(1):64–72

    Article  CAS  Google Scholar 

  • Cuperus RA, Herweijer MA, Van Ooijen AJ et al (2003) Cleaning compositions containing plant cell wall degrading enzymes and their use in cleaning methods. US Patent 20030040454A1 (17 June 1994)

    Google Scholar 

  • Dalal S, Balasubramanian S, Regan L (1997) Protein alchemy: changing beta-sheet into alpha-helix. Nat Struct Biol 4(7):548–552

    Article  CAS  PubMed  Google Scholar 

  • Das SP, Ravindran R, Ahmed S et al (2012) Bioethanol production involving recombinant C. thermocellum hydrolytic hemicellulase and fermentative microbes. Appl Biochem Biotechnol 167(6):1475–1488

    Article  CAS  PubMed  Google Scholar 

  • de Bales SA, Castillo J (1979) Production of lactase by Candida pseudotropicalis grown in Whey. Appl Environ Microbiol 37(6):1201–1205

    PubMed  PubMed Central  Google Scholar 

  • Dhawan S, Kaur J (2007) Microbial mannanases: an overview of production and applications. Crit Rev Biotechnol 27(4):197–216

    Article  CAS  PubMed  Google Scholar 

  • Diler G, Chevallier S, Pöhlmann I et al (2015) Assessment of amyloglucosidase activity during production and storage of laminated pie dough. Impact on raw dough properties and sweetness after baking. J Cereal Sci 61(0):63–70

    Article  CAS  Google Scholar 

  • Doi RH, Kosugi A (2004) Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nat Rev Microbiol 2(7):541–551

    Article  CAS  PubMed  Google Scholar 

  • Dong XY, Xiu ZL, Li S et al (2010) Dielectric barrier discharge plasma as a novel approach for improving 1, 3-propanediol production in Klebsiella pneumoniae. Biotechnol Lett 32(9):1245–1250

    Article  CAS  PubMed  Google Scholar 

  • Duan X, Sun X, Wu J (2014) Optimization of fermentation conditions of recombinant Pichia pastoris that can produce β-galactosidase. Genomics Appl Biol 33(6):1288–1293

    Google Scholar 

  • El-Batal AI, ElKenawy NM, Yassin AS et al (2015) Laccase production by Pleurotus ostreatus and its application in synthesis of gold nanoparticles. Biotechnol Rep 5(0):31–39

    Article  Google Scholar 

  • Espinosa-Ramírez J, Pérez-Carrillo E, Serna-Saldívar SO (2014) Maltose and glucose utilization during fermentation of barley and sorghum lager beers as affected by β-amylase or amyloglucosidase addition. J Cereal Sci 60(3):602–609

    Article  CAS  Google Scholar 

  • Fernandez-Lafuente R (2010) Lipase from Thermomyces lanuginosus: uses and prospects as an industrial biocatalyst. J Mol Catal B Enzym 62(3–4):197–212

    Article  CAS  Google Scholar 

  • Ferreira NL, Margeot A, Blanquet S et al (2014) Chapter 17: Use of cellulases from Trichoderma reesei in the twenty-first century – Part I: Current industrial uses and future applications in the production of second ethanol generation. In: Kubicek CP (ed) Biotechnology and biology of Trichoderma. Elsevier, Amsterdam, pp 245–261

    Chapter  Google Scholar 

  • Fodje M, Hansson A, Hansson M et al (2001) Interplay between an AAA module and an integrin I domain may regulate the function of magnesium chelatase. J Mol Biol 311(1):111–122

    Article  CAS  PubMed  Google Scholar 

  • Goldberg RN, Tewari YB, Bell D et al (1993) Thermodynamics of enzyme-catalyzed reactions: Part 1. Oxidoreductases. J Phys Chem Ref Data 22(2):515–582

    Article  CAS  Google Scholar 

  • Gomes J, Terler K, Kratzer R (2007) Production of thermostable β-mannosidase by a strain of Thermoascus aurantiacus: isolation, partial purification and characterization of the enzyme. Enzym Microb Technol 40(4):969–975

    Article  CAS  Google Scholar 

  • Goswami GK, Pathak RR (2013) Microbial xylanases and their biomedical applications: a review. Int J Basic Clin Pharmacol 2(3):237–246

    Article  Google Scholar 

  • Gupta R, Beg Q, Lorenz P (2002) Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol 59(1):15–32

    Article  CAS  PubMed  Google Scholar 

  • Hill M, Buchan A (2002) The Canadian Activase for Stroke Effectiveness Study (CASES): final results. Stroke 33(1):359–359

    Article  Google Scholar 

  • Horrobin T, Hao Tran C, Crout D (1998) Esterase-catalysed regioselective 6-deacylation of hexopyranose per-acetates, acid-catalysed rearrangement to the 4-deprotected products and conversions of these into hexose 4- and 6-sulfates. J Chem Soc Perkin Trans 1(6):1069–1080

    Article  Google Scholar 

  • Irimescu R, Furihata K, Hata K et al (2001) Utilization of reaction medium-dependent regiospecificity of Candida antarctica lipase (Novozym 435) for the synthesis of 1, 3-dicapryloyl-2-docosahexaenoyl (or eicosapentaenoyl) glycerol. J Am Oil Chem Soc 78(3):285–290

    Article  CAS  Google Scholar 

  • Iyer PV, Ananthanarayan L (2008) Enzyme stability and stabilization – aqueous and non-aqueous environment. Process Biochem 43(10):1019–1032

    Article  CAS  Google Scholar 

  • James JA, Lee BH (1997) Glucoamylases: microbial sources, industrial applications and molecular biology – a review. J Food Biochem 21(6):1–52

    Article  CAS  Google Scholar 

  • Joshi JB (2014) Phytase – a key to unlock phytate complex. Int J Pure App Biosci 2(6):304–313

    Google Scholar 

  • Juturu V, Wu JC (2014) Microbial cellulases: engineering, production and applications. Renew Sustain Energy Rev 33(0):188–203

    Article  CAS  Google Scholar 

  • Kanelli M, Topakas E (2017) Acylation of soluble polysaccharides in a biphasic system catalyzed by a CE2 acetyl esterase. Carbohydr Polym 163:208–215

    Article  CAS  PubMed  Google Scholar 

  • Kieliszek M, Misiewicz A (2014) Microbial transglutaminase and its application in the food industry. Rev Folia Microbiol 59(3):241–250

    Article  CAS  Google Scholar 

  • Kies AK (2014) Authorised EU health claims related to the management of lactose intolerance: reduced lactose content, dietary lactase supplements and live yoghurt cultures. In: Sadler MJ (ed) Foods, nutrients and food ingredients with authorised Eu health claims, 1st edn. Woodhead Publishing, Sawston

    Google Scholar 

  • Klotz IM, Darnall DW, Langerman NR (1975) Quaternary structure of proteins. Protein J 1:1293–1411

    Google Scholar 

  • Knob A, Beitel SM, Fortkamp D et al (2013) Production, purification, and characterization of a major Penicillium glabrum xylanase using Brewer’s spent grain as substrate. BioMed Res Int 2013:8

    Article  CAS  Google Scholar 

  • Koshland DE (1995) The key–lock theory and the induced fit theory. Angew Chem Int Ed 33(23–24):2375–2378

    Article  Google Scholar 

  • Kulshrestha S, Tyagi P, Sindhi V et al (2013) Invertase and its applications – a brief review. J Pharm Res 7(9):792–797

    CAS  Google Scholar 

  • Kumar P, Satyanarayana T (2009) Microbial glucoamylases: characteristics and applications. Crit Rev Biotechnol 29(3):225–255

    Article  CAS  PubMed  Google Scholar 

  • Kynadi AS, Suchithra TV (2017) Formulation and optimization of a novel media comprising rubber seed oil for PHA production. Ind Crop Prod 105:156–163

    Article  CAS  Google Scholar 

  • Lu W, Oberthür M, Leimkuhler C et al (2004) Characterization of a regiospecific epivancosaminyl transferase GtfA and enzymatic reconstitution of the antibiotic chloroeremomycin. Proc Natl Acad Sci U S A 101(13):4390–4395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macris B (1981) Production of extracellular lactase from Fusarium moniliforme. Eur J Appl Microbiol Biotechnol 13(3):161–164

    Article  CAS  Google Scholar 

  • Mamma D, Hatzinikolaou DG, Christakopoulos P (2004) Biochemical and catalytic properties of two intracellular β-glucosidases from the fungus Penicillium decumbens active on flavonoid glucosides. J Mol Catal B Enzym 27(4–6):183–190

    Article  CAS  Google Scholar 

  • Mate DM, Alcalde M (2015) Laccase engineering: from rational design to directed evolution. Biotechnol Adv 33(1):25–40

    Article  CAS  PubMed  Google Scholar 

  • McCleary BV, Matheson NK (1983) Action patterns and substrate-binding requirements of β-d-mannanase with mannosaccharides and mannan-type polysaccharides. Carbohydr Res 119:191–219

    Article  CAS  Google Scholar 

  • Mishra A, Kumar S (2007) Cyanobacterial biomass as N-supplement to agro-waste for hyper-production of laccase from Pleurotus ostreatus in solid state fermentation. Process Biochem 42(4):681–685

    Article  CAS  Google Scholar 

  • Mohammadi M, Habibi Z, Dezvarei S et al (2014) Improvement of the stability and selectivity of Rhizomucor miehei lipase immobilized on silica nanoparticles: selective hydrolysis of fish oil using immobilized preparations. Process Biochem 49(8):1314–1323

    Article  CAS  Google Scholar 

  • Motoki M, Seguro K (1998) Transglutaminase and its use for food processing. Trends Food Sci Technol 9(5):204–210

    Article  CAS  Google Scholar 

  • Mukherji R, Varshney NK, Panigrahi P et al (2014) A new role for penicillin acylases: degradation of acyl homoserine lactone quorum sensing signals by Kluyvera citrophila penicillin G acylase. Enzym Microb Technol 56:1–7

    Article  CAS  Google Scholar 

  • Naganagouda K, Salimath P, Mulimani V (2009) Purification and characterization of endo-beta-1, 4 mannanase from Aspergillus niger for application in food processing industry. J Microbiol Biotechnol 19(10):1184–1190

    CAS  PubMed  Google Scholar 

  • Nakkharat P, Haltrich D (2006) Purification and characterisation of an intracellular enzyme with β-glucosidase and β-galactosidase activity from the thermophilic fungus Talaromyces thermophilus CBS 236.58. J Biotechnol 123(3):304–313

    Article  CAS  PubMed  Google Scholar 

  • Neumann NP, Lampen JO (1967) Purification and properties of yeast invertase. Biochemist 6(2):468–475

    Article  CAS  Google Scholar 

  • Noda S, Miyazaki T, Tanaka T et al (2013) High-level production of mature active-form Streptomyces mobaraensis transglutaminase via pro-transglutaminase processing using Streptomyces lividans as a host. Biochem Eng J 74(0):76–80

    Article  CAS  Google Scholar 

  • Pauletti GM, Gangwar S, Wang B et al (1997) Esterase-sensitive cyclic prodrugs of peptides: evaluation of a phenylpropionic acid Promoiety in a model hexapeptide. Pharm Res 14(1):11–17

    Article  CAS  PubMed  Google Scholar 

  • Pillai P, Mandge S, Archana G (2011) Statistical optimization of production and tannery applications of a keratinolytic serine protease from Bacillus subtilis P13. Process Biochem 46(5):1110–1117

    Article  CAS  Google Scholar 

  • Polizeli M, Rizzatti A, Monti R et al (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67(5):577–591

    Article  CAS  PubMed  Google Scholar 

  • Pollard DJ, Woodley JM (2007) Biocatalysis for pharmaceutical intermediates: the future is now. Trends Biotechnol 25(2):66–73

    Article  CAS  PubMed  Google Scholar 

  • Prakash B, Vidyasagar M, Madhukumar MS et al (2009) Production, purification, and characterization of two extremely halotolerant, thermostable, and alkali-stable α-amylases from Chromohalobacter sp. TVSP 101. Process Biochem 44(2):210–215

    Article  CAS  Google Scholar 

  • Prasad MP, Manjunath K (2011) Comparative study on biodegradation of lipid-rich wastewater using lipase producing bacterial species. Indian J Biotechnol 10:121–124

    CAS  Google Scholar 

  • Radha S, Nithya V, Himakiran R et al (2011) Production and optimization of acid protease by Aspergillus spp under submerged fermentation. Arch Appl Sci Res 3:155–163

    CAS  Google Scholar 

  • Ramalingam C, Harris AD (2010) Xylanases and its application in food industry: a review. J Exp Sci 1(7)

    Google Scholar 

  • Rasor JP, Voss E (2001) Enzyme-catalyzed processes in pharmaceutical industry. Appl Catal A Gen 221(1):145–158

    Article  CAS  Google Scholar 

  • Ravindran R, Jaiswal AK (2016) Microbial enzyme production using lignocellulosic food industry wastes as feedstock: a review. Bioengineering 3(4):30. https://doi.org/10.3390/bioengineering3040030

    Article  CAS  PubMed Central  Google Scholar 

  • Richards FM, Vithayathil PJ (1959) The preparation of subtilisin-modified ribonuclease and the separation of the peptide and protein components. J Biol Chem 234(6):1459–1465

    CAS  PubMed  Google Scholar 

  • Robinson-Rechavi M, Alibés A, Godzik A (2006) Contribution of electrostatic interactions, compactness and quaternary structure to protein thermostability: lessons from structural genomics of Thermotoga maritima. J Mol Biol 356(2):547–557

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez Couto S, Toca Herrera JL (2006) Industrial and biotechnological applications of laccases: a review. Biotechnol Adv 24(5):500–513

    Article  PubMed  CAS  Google Scholar 

  • Rohan (2016) Title of subordinate document. In: Industrial enzymes market worth 6.30 Billion USD by 2022. Markets and markets. Available via DIALOG. https://www.marketsandmarkets.com/PressReleases/industrial-enzymes.asp. Accessed 26 Feb 2018

  • Roohi, Kuddus M (2014) Bio-statistical approach for optimization of cold-active α-amylase production by novel psychrotolerant M. foliorum GA2 in solid state fermentation. Biocatal Agric Biotechnol 3(2):175–181

    Article  Google Scholar 

  • Sahnoun M, Kriaa M, Elgharbi F et al (2015) Aspergillus oryzae S2 alpha-amylase production under solid state fermentation: optimization of culture conditions. Int J Biol Macromol 75(0):73–80

    Article  CAS  PubMed  Google Scholar 

  • Sakai T, Sakamoto T, Hallaert J et al (1993) Pectin, pectinase, and protopectinase: production, properties, and applications. In: Saul N, Allen IL (eds) Advances in applied microbiology. Academic, New York

    Google Scholar 

  • Sawant R, Nagendran S (2014) Protease: an enzyme with multiple industrial applications. World J Pharm Sci 3:568–579

    CAS  Google Scholar 

  • Selle PH, Ravindran V (2007) Microbial phytase in poultry nutrition. Anim F Sci Technol 135(1–2):1–41

    CAS  Google Scholar 

  • Sen SK, Dora TK, Bandyopadhyay B et al (2014) Thermostable alpha-amylase enzyme production from hot spring isolates Alcaligenes faecalis SSB17 – statistical optimization. Biocatal Agric Biotechnol 3(4):218–226

    Article  Google Scholar 

  • Servili M, Begliomini AL, Montedoro G et al (1992) Utilisation of a yeast pectinase in olive oil extraction and red wine making processes. J Sci Food Agric 58(2):253–260

    Article  CAS  Google Scholar 

  • Seyis I, Aksoz N (2004) Production of lactase by Trichoderma sp. Food Technol Biotechnol 42(2):121–124

    CAS  Google Scholar 

  • Shin H, Kong J, Lee J et al (2000) Syntheses of hydroxybenzyl-α-glucosides by amyloglucosidase-catalyzed transglycosylation. Biotechnol Lett 22(4):321–325

    Article  CAS  Google Scholar 

  • Shraddha SR, Sehgal S et al (2011) Laccase: microbial sources, production, purification, and potential biotechnological applications. Enzyme Res 11

    Google Scholar 

  • Singh H, Soni SK (2001) Production of starch-gel digesting amyloglucosidase by Aspergillus oryzae HS-3 in solid state fermentation. Process Biochem 37(5):453–459

    Article  Google Scholar 

  • Singhania RR, Saini JK, Saini R et al (2014) Bioethanol production from wheat straw via enzymatic route employing Penicillium janthinellum cellulases. Bioresour Technol 169(0):490–495

    Article  CAS  PubMed  Google Scholar 

  • Soltis DE (2012) Isozymes in plant biology. Springer, Dordrecht

    Google Scholar 

  • Speranza P, Ribeiro APB, Macedo GA (2016) Application of lipases to regiospecific interesterification of exotic oils from an Amazonian area. J Biotechnol 218:13–20

    Article  CAS  PubMed  Google Scholar 

  • Suali E, Sarbatly R (2012) Conversion of microalgae to biofuel. Renew Sustain Energy Rev 16(6):4316–4342

    Article  CAS  Google Scholar 

  • Sundarram A, Murthy TPK (2014) α-amylase production and applications: a review. J Appl Environ Microbiol 2(4):166–175

    Google Scholar 

  • Suzuki U, Yoshimura K, Takaishi M (1907) About the enzyme “phytase”, which splits “anhydro-oxymethylene diphosphoric acid”. Bull Coll Agric Tokyo Imp Univ 7:503–512

    Google Scholar 

  • Talukder MMR, Wu JC, Van Nguyen TB et al (2009) Novozym 435 for production of biodiesel from unrefined palm oil: comparison of methanolysis methods. J Mol Catal B Enzyme 60(3–4):106–112

    Article  CAS  Google Scholar 

  • Tang XJ, He GQ, Chen QH et al (2004) Medium optimization for the production of thermal stable β-glucanase by Bacillus subtilis ZJF-1A5 using response surface methodology. Bioresour Technol 93(2):175–181

    Article  CAS  PubMed  Google Scholar 

  • Vandamme EJ, Derycke DG (1983) Microbial inulinases: fermentation process, properties, and applications. Adv Appl Microbiol 29(1):983

    Google Scholar 

  • Várnai A, Mäkelä MR, Djajadi DT et al (2014) Chapter 4: Carbohydrate-binding modules of fungal cellulases: occurrence in nature, function, and relevance in industrial biomass conversion. In: Sima S, Geoffrey Michael G (eds) Advances in applied microbiology. Academic/Elsevier, Amsterdam, pp 103–165

    Google Scholar 

  • Vellard M (2003) The enzyme as drug: application of enzymes as pharmaceuticals. Curr Opin Biotechnol 14(4):444–450

    Article  CAS  PubMed  Google Scholar 

  • Vijayaraghavan K, Yamini D, Ambika V et al (2009) Trends in inulinase production – a review. Crit Rev Biotechnol 29(1):67–77

    Article  CAS  PubMed  Google Scholar 

  • Villettaz JC, Steiner D, Trogus H (1984) The use of a beta glucanase as an enzyme in wine clarification and filtration. Am J Enol Vitic 35(4):253–256

    CAS  Google Scholar 

  • Virsu P, Liljeblad A, Kanerva A et al (2001) Preparation of the enantiomers of 1-phenylethan-1,2-diol. Regio- and enantioselectivity of acylase I and Candida antarctica lipases A and B. Tetrahedron Asymmetry 12(17):2447–2455

    Article  CAS  Google Scholar 

  • Webb OF, Phelps TJ, Bienkowski PR et al (1992) Development of a differential volume reactor system for soil biodegradation studies. Appl Biochem Biotechnol 28:5–19

    Google Scholar 

  • Yoshida H (1883) LXIII.-Chemistry of lacquer (Urushi). Part I. Communication from the Chemical Society of Tokio. J Chem Soc 43(0):472–486

    Article  CAS  Google Scholar 

  • Zittan L (1981) Enzymatic hydrolysis of inulin – an alternative way to fructose production. Starch-Stärke 33(11):373–377

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit K. Jaiswal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ravindran, R., Jaiswal, A.K. (2018). Enzymes in Bioconversion and Food Processing. In: Kuddus, M. (eds) Enzymes in Food Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-1933-4_2

Download citation

Publish with us

Policies and ethics