Skip to main content

Chemoenzymatic Bioconjugation of Antibodies: Linking Proteins for Biomedical Applications

  • Chapter
  • First Online:
Enzymes in Food Technology

Abstract

Antibodies are useful biomolecules applied in many biomedical applications. The selectivity and specificity of antibodies against the target antigens have gained wide interest for both diagnostic and therapeutic applications. The antibodies are capable of functioning as target-specific carriers to allow site-specific delivery of payloads. However, the challenge has always revolved around the ability to attach designer proteins, enzymes, or drugs to the antibody molecule. The conventional approach involves the use of chemical-based modifications with the introduction of chemical linkers and alteration of chemical functional groups to initiate a covalent attachment of molecules to the antibodies. However, the use of chemically modified strategies to attach antibodies to various molecules has provided several setbacks throughout the years. The major consideration involves the conjugation efficiency, the yield of conjugated product recovered post-conjugation, and more importantly the effects to the antibody-binding sites. Therefore, the introduction of bioconjugation approaches utilizing biologically active enzymes to initiate conjugation processes provided researchers with a much-anticipated alternative that was less toxic to the native proteins. This chapter focuses on the application of biologically inspired enzymes that have been used successfully to conjugate proteins or drugs to antibodies in a “green” manner. The enzymes highlighted in this chapter would include sortase, transglutaminase, and formylglycine-generating enzymes. The chapter also highlights the applications of these methods to generate conjugates that have been applied either for diagnostic or therapeutic application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acchione M, Kwon H, Jochheim CM et al (2012) Impact of linker and conjugation chemistry on antigen binding, Fc receptor binding and thermal stability of model antibody-drug conjugates. MAbs 4:362–372

    Article  PubMed  PubMed Central  Google Scholar 

  • Agarwal P, Bertozzi CR (2015) Site-specific antibody–drug conjugates: the nexus of bioorthogonal chemistry, protein engineering, and drug development. Bioconjug Chem 26:176–192

    Article  CAS  PubMed  Google Scholar 

  • Akkapeddi P, Azizi S-A, Freedy AM et al (2016) Construction of homogeneous antibody–drug conjugates using site-selective protein chemistry. Chem Sci 7:2954–2963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alberts B, Johnson A, Lewis J et al (2002) The adaptive immune system. Garland Science, New York

    Google Scholar 

  • Ando H, Adachi M, Umeda K et al (1989) Purification and characteristics of a novel transglutaminase derived from microorganisms. Agric Biol Chem 53:2613–2617

    CAS  Google Scholar 

  • Appel MJ, Bertozzi CR (2014) Formylglycine, a post-translationally generated residue with unique catalytic capabilities and biotechnology applications. ACS Chem Biol 10:72–84

    Article  CAS  Google Scholar 

  • Autuori F, Farrace MG, Oliverio S et al (1998) “Tissue” transglutaminase and apoptosis. Adv Biochem Eng Biotechnol 62:129–136

    CAS  PubMed  Google Scholar 

  • Badescu G, Bryant P, Bird M et al (2014) Bridging disulfides for stable and defined antibody drug conjugates. Bioconjug Chem 25:1124–1136

    Article  CAS  PubMed  Google Scholar 

  • Bailon P, Won C-Y (2009) PEG-modified biopharmaceuticals. Expert Opin Drug Deliv 6:1–16

    Article  CAS  PubMed  Google Scholar 

  • Basle E, Joubert N, Pucheault M (2010) Protein chemical modification on endogenous amino acids. Chem Biol 17:213–227

    Article  CAS  PubMed  Google Scholar 

  • Beerli RR, Hell T, Merkel AS et al (2015) Sortase enzyme-mediated generation of site-specifically conjugated antibody drug conjugates with high in vitro and in vivo potency. PLoS One 10:e0131177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Behrens CR, Liu B (2014) Methods for site-specific drug conjugation to antibodies. MAbs 6:46–53

    Article  PubMed  Google Scholar 

  • Boylan NJ, Zhou W, Proos RJ et al (2013) Conjugation site heterogeneity causes variable electrostatic properties in Fc conjugates. Bioconjug Chem 24:1008–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brotzel F, Mayr H (2007) Nucleophilicities of amino acids and peptides. Org Biomol Chem 5:3814–3820

    Article  CAS  PubMed  Google Scholar 

  • Brun M-P, Gauzy-Lazo L (2013) Protocols for lysine conjugation. In: L D (ed) Antibody-drug conjugates. Methods in molecular biology (Methods and protocols). Humana Press, Totowa, pp 173–187

    Chapter  Google Scholar 

  • Cal PM, Bernardes GJ, Gois PM (2014) Cysteine-selective reactions for antibody conjugation. Angew Chem Int Ed 53:10585–10587

    Article  CAS  Google Scholar 

  • Caminschi I, Lahoud MH, Shortman K (2009) Enhancing immune responses by targeting antigen to DC. Eur J Immunol 39:931–938

    Article  CAS  PubMed  Google Scholar 

  • Carlson BL, Ballister ER, Skordalakes E et al (2008) Function and structure of a prokaryotic formylglycine-generating enzyme. J Biol Chem 283:20117–20125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrico IS, Carlson BL, Bertozzi CR (2007) Introducing genetically encoded aldehydes into proteins. Nat Chem Biol 3:321–322

    Article  CAS  PubMed  Google Scholar 

  • Cascioferro S, Totsika M, Schillaci D (2014) Sortase A: an ideal target for anti-virulence drug development. Microb Pathog 77:105–112

    Article  CAS  PubMed  Google Scholar 

  • Chalker JM, Bernardes GJ, Lin YA et al (2009) Chemical modification of proteins at cysteine: opportunities in chemistry and biology. Chem Asian J 4:630–640

    Article  CAS  PubMed  Google Scholar 

  • Chapman AP (2002) PEGylated antibodies and antibody fragments for improved therapy: a review. Adv Drug Deliv Rev 54:531–545

    Article  CAS  PubMed  Google Scholar 

  • Chen JS, Mehta K (1999) Tissue transglutaminase: an enzyme with a split personality. Int J Biochem Cell Biol 31:817–836

    Article  CAS  PubMed  Google Scholar 

  • Chen I, Dorr BM, Liu DR (2011) A general strategy for the evolution of bond-forming enzymes using yeast display. Proc Natl Acad Sci 108:11399–11404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Cohen J, Song X et al (2016) Improved variants of Srt A for site-specific conjugation on antibodies and proteins with high efficiency. Sci Rep 6:31899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chih HW, Gikanga B, Yang Y et al (2011) Identification of amino acid residues responsible for the release of free drug from an antibody–drug conjugate utilizing lysine–succinimidyl ester chemistry. J Pharm Sci 100:2518–2525

    Article  CAS  PubMed  Google Scholar 

  • Cohen JD, Zou P, Ting AY (2012) Site-specific protein modification using lipoic acid ligase and bis-aryl hydrazone formation. ChemBioChem 13:888–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comfort D, Clubb RT (2004) A comparative genome analysis identifies distinct sorting pathways in gram-positive bacteria. Infect Immun 72:2710–2722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coquerel Y, Boddaert T, Presset M et al (2010) Ideas in chemistry and molecular sciences: advances in synthetic chemistry. Wiley, Weinheim

    Google Scholar 

  • Coussons P, Price N, Kelly S et al (1992) Factors that govern the specificity of transglutaminase-catalyzed modification of proteins and peptides. Biochem J 282:929–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cowan AJ, Laszlo GS, Estey EH et al (2013) Antibody-based therapy of acute myeloid leukemia with gemtuzumab ozogamicin. Front Biosci (Landmark Edition) 18:1311

    Article  CAS  Google Scholar 

  • Crankshaw MW, Grant GA (2001) Modification of cysteine. Curr Protoc Protein Sci 3:15.1.1–15.1.18

    Google Scholar 

  • Dale JW (2012) Understanding microbes: an introduction to a small world. Wiley, New York

    Google Scholar 

  • Del Duca S, Verderio E, Serafini-Fracassini D et al (2014) The plant extracellular transglutaminase: what mammal analogues tell. Amino Acids 46:777–792

    Article  PubMed  CAS  Google Scholar 

  • Dennler P, Chiotellis A, Fischer E et al (2014) Transglutaminase-based chemo-enzymatic conjugation approach yields homogeneous antibody–drug conjugates. Bioconjug Chem 25:569–578

    Article  CAS  PubMed  Google Scholar 

  • Dennler P, Fischer E, Schibli R (2015) Antibody conjugates: from heterogeneous populations to defined reagents. Antibodies 4:197–224

    Article  CAS  Google Scholar 

  • Dierks T, Schmidt B, Von Figura K (1997) Conversion of cysteine to formylglycine: a protein modification in the endoplasmic reticulum. Proc Natl Acad Sci 94:11963–11968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimitrov DS (2010) Therapeutic antibodies, vaccines and antibodyomes. MAbs 2:347–356

    Article  PubMed  PubMed Central  Google Scholar 

  • Dorywalska M, Strop P, Melton-Witt JA et al (2015) Site-dependent degradation of a non-cleavable auristatin-based linker-payload in rodent plasma and its effect on ADC efficacy. PLoS One 10:e0132282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dozier JK, Khatwani SL, Wollack JW et al (2014) Engineering protein farnesyltransferase for enzymatic protein labeling applications. Bioconjug Chem 25:1203–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drake PM, Albers AE, Baker J et al (2014) Aldehyde tag coupled with HIPS chemistry enables the production of ADCs conjugated site-specifically to different antibody regions with distinct in vivo efficacy and PK outcomes. Bioconjug Chem 25:1331–1341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dramsi S, Trieu-Cuot P, Bierne H (2005) Sorting sortases: a nomenclature proposal for the various sortases of gram-positive bacteria. Res Microbiol 156:289–297

    Article  CAS  PubMed  Google Scholar 

  • Duarte JN, Cragnolini JJ, Swee LK, Bilate AM, Bader J, Ingram JR, Rashidfarrokhi A, Fang T, Schiepers A, Hanke L (2016) Generation of Immunity against Pathogens via Single-Domain Antibody–Antigen Constructs. J Immunol 197(12): 4838–4847

    Article  CAS  PubMed  Google Scholar 

  • Farias SE, Strop P, Delaria K et al (2014) Mass spectrometric characterization of transglutaminase based site-specific antibody–drug conjugates. Bioconjug Chem 25:240–250

    Article  CAS  PubMed  Google Scholar 

  • Fierer JO, Veggiani G, Howarth M (2014) SpyLigase peptide–peptide ligation polymerizes affibodies to enhance magnetic cancer cell capture. Proc Natl Acad Sci 111:E1176–E1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folk J, Cole P (1966) Mechanism of action of Guinea pig liver transglutaminase I. Purification and properties of the enzyme: identification of a functional cysteine essential for activity. J Biol Chem 241:5518–5525

    CAS  PubMed  Google Scholar 

  • Frenzel A, Schirrmann T, Hust M (2016) Phage display-derived human antibodies in clinical development and therapy. MAbs 8:1177–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garandeau C, Réglier-Poupet H, Dubail I et al (2002) The sortase SrtA of Listeria monocytogenes is involved in processing of internalin and in virulence. Infect Immun 70:1382–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong H, Holcomb I, Ooi A et al (2016) Simple method to prepare oligonucleotide-conjugated antibodies and its application in multiplex protein detection in single cells. Bioconjug Chem 27:217–225

    Article  CAS  PubMed  Google Scholar 

  • Griffin M, Casadio R, Bergamini CM (2002) Transglutaminases: nature’s biological glues. Biochem J 368:377–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grünewald J, Klock HE, Cellitti SE et al (2015) Efficient preparation of site-specific antibody–drug conjugates using phosphopantetheinyl transferases. Bioconjug Chem 26:2554–2562

    Article  PubMed  CAS  Google Scholar 

  • Gundersen MT, Keillor JW, Pelletier JN (2014) Microbial transglutaminase displays broad acyl-acceptor substrate specificity. Appl Microbiol Biotechnol 98:219–230

    Article  CAS  PubMed  Google Scholar 

  • Hagemeyer CE, Alt K, Johnston AP et al (2015) Particle generation, functionalization and sortase A–mediated modification with targeting of single-chain antibodies for diagnostic and therapeutic use. Nat Protoc 10:90–105

    Article  CAS  PubMed  Google Scholar 

  • Hamann PR, Hinman LM, Hollander I et al (2002) Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody− calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug Chem 13:47–58

    Article  CAS  PubMed  Google Scholar 

  • Hofer T, Skeffington LR, Chapman CM et al (2009) Molecularly defined antibody conjugation through a selenocysteine interface. Biochemistry 48:12047–12057

    Article  CAS  PubMed  Google Scholar 

  • Hull EA, Livanos M, Miranda E et al (2014) Homogeneous bispecifics by disulfide bridging. Bioconjug Chem 25:1395–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikura K, Sasaki R, Motoki M (1992) Use of transglutaminase in quality-improvement and processing of food proteins. Comments. Agric Food Chem 2:389–407

    CAS  Google Scholar 

  • Ismail NF, Lim TS (2016) Site-specific scFv labelling with invertase via Sortase A mechanism as a platform for antibody-antigen detection using the personal glucose meter. Sci Rep 6:19338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson DY (2016) Processes for constructing homogeneous antibody drug conjugates. Org Process Res Dev 20:852–866

    Article  CAS  Google Scholar 

  • Jazayeri MH, Amani H, Pourfatollah AA et al (2016) Various methods of gold nanoparticles (GNPs) conjugation to antibodies. Sens Biosensing Res 9:17–22

    Article  Google Scholar 

  • Jeger S, Zimmermann K, Blanc A et al (2010) Site-specific and stoichiometric modification of antibodies by bacterial transglutaminase. Angew Chem Int Ed 49:9995–9997

    Article  CAS  Google Scholar 

  • Jevševar S, Kusterle M, Kenig M (2012) PEGylation of antibody fragments for half-life extension. In: Antibody methods and protocols. Springer, New York, pp 233–246

    Chapter  Google Scholar 

  • Johansson L, Gafvelin G, Arnér ES (2005) Selenocysteine in proteins—properties and biotechnological use. Biochim Biophys Acta 1726:1–13

    Article  CAS  PubMed  Google Scholar 

  • Johnston MV, Adams HP, Fatemi A (2016) Neurobiology of disease. Oxford University Press, Oxford/New York

    Google Scholar 

  • Jones MW, Strickland RA, Schumacher FF et al (2012) Polymeric dibromomaleimides as extremely efficient disulfide bridging bioconjugation and pegylation agents. J Am Chem Soc 134:1847–1852

    Article  CAS  PubMed  Google Scholar 

  • Josten A, Haalck L, Spener F et al (2000) Use of microbial transglutaminase for the enzymatic biotinylation of antibodies. J Immunol Methods 240:47–54

    Article  CAS  PubMed  Google Scholar 

  • Junutula JR, Raab H, Clark S et al (2008) Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol 26:925–932

    Article  CAS  PubMed  Google Scholar 

  • Kamiya N, Mori Y (2015) Substrate engineering of microbial transglutaminase for site-specific protein modification and bioconjugation. In: Hitomi K, Kojima S, Fesus L (eds) Transglutaminases. Springer, Tokyo, pp 373–383

    Google Scholar 

  • Kamiya N, Takazawa T, Tanaka T et al (2003) Site-specific cross-linking of functional proteins by transglutamination. Enzym Microb Technol 33:492–496

    Article  CAS  Google Scholar 

  • Kieliszek M, Misiewicz A (2014) Microbial transglutaminase and its application in the food industry. A review. Folia Microbiol (Praha) 59:241–250

    Article  CAS  Google Scholar 

  • Kim HJ, Ha S, Lee HY et al (2015) ROSics: chemistry and proteomics of cysteine modifications in redox biology. Mass Spectrom Rev 34:184–208

    Article  PubMed  CAS  Google Scholar 

  • Kline T, Steiner AR, Penta K et al (2015) Methods to make homogenous antibody drug conjugates. Pharm Res 32:3480–3493

    Article  CAS  PubMed  Google Scholar 

  • Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497

    Article  PubMed  Google Scholar 

  • Koniev O, Wagner A (2015) Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chem Soc Rev 44:5495–5551

    Article  CAS  PubMed  Google Scholar 

  • Kornberger P, Skerra A (2014) Sortase-catalyzed in vitro functionalization of a HER2-specific recombinant Fab for tumor targeting of the plant cytotoxin gelonin. MAbs 6:354–366

    Article  PubMed  Google Scholar 

  • Landgrebe J, Dierks T, Schmidt B et al (2003) The human SUMF1 gene, required for posttranslational sulfatase modification, defines a new gene family which is conserved from pro-to eukaryotes. Gene 316:47–56

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Song C, Kim DH et al (2013) Glutamine (Q)-peptide screening for transglutaminase reaction using mRNA display. Biotechnol Bioeng 110:353–362

    Article  CAS  PubMed  Google Scholar 

  • Levary DA, Parthasarathy R, Boder ET et al (2011) Protein-protein fusion catalyzed by sortase A. PLoS One 6:e18342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Yang J, Rader C (2014) Antibody conjugation via one and two C-terminal selenocysteines. Methods 65:133–138

    Article  CAS  PubMed  Google Scholar 

  • Li W, Prabakaran P, Chen W et al (2016) Antibody aggregation: insights from sequence and structure. Antibodies 5:19

    Article  CAS  PubMed Central  Google Scholar 

  • Lin C-W, Ting AY (2006) Transglutaminase-catalyzed site-specific conjugation of small-molecule probes to proteins in vitro and on the surface of living cells. J Am Chem Soc 128:4542–4543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorand L, Graham RM (2003) Transglutaminases: crosslinking enzymes with pleiotropic functions. Mol Cell Biol 4:140–156

    CAS  Google Scholar 

  • Luciano FB, Arntfield S (2012) Use of transglutaminases in foods and potential utilization of plants as a transglutaminase source–review. Biotemas 25:1–11

    Google Scholar 

  • Mariathasan S, Tan M-W (2017) Antibody–antibiotic conjugates: a novel therapeutic platform against bacterial infections. Trends Mol Med 23:135–149

    Article  CAS  PubMed  Google Scholar 

  • Mazmanian SK, Liu G, Ton-That H et al (1999) Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science 285:760–763

    Article  CAS  PubMed  Google Scholar 

  • McAuley A, Jacob J, Kolvenbach CG et al (2008) Contributions of a disulfide bond to the structure, stability, and dimerization of human IgG1 antibody CH3 domain. Protein Sci 17:95–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCombs JR, Owen SC (2015) Antibody drug conjugates: design and selection of linker, payload and conjugation chemistry. AAPS J 17:339–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCracken MN, Radu CG (2015) Targeted noninvasive imaging of the innate immune response. Proc Natl Acad Sci 112:5868–5869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonagh CF, Turcott E, Westendorf L et al (2006) Engineered antibody–drug conjugates with defined sites and stoichiometries of drug attachment. Protein Eng Des Sel 19:299–307

    Article  CAS  PubMed  Google Scholar 

  • McFarland JM, Rabuka D (2015) Recent advances in chemoenzymatic bioconjugation methods. Org Chem Insights 5:7–14

    Article  Google Scholar 

  • McLaughlin J, LoRusso P (2016) Antibody–Drug Conjugates (ADCs) in clinical development. In: Olivier KJ Jr, Hurvitz SA (eds) Antibody-drug conjugates: fundamentals, drug development, and clinical outcomes to target cancer. Wiley, Hoboken, pp 321–344

    Chapter  Google Scholar 

  • Mindt TL, Jungi V, Wyss S et al (2007) Modification of different IgG1 antibodies via glutamine and lysine using bacterial and human tissue transglutaminase. Bioconjug Chem 19:271–278

    Article  PubMed  CAS  Google Scholar 

  • Motoki M, Nio N (1983) Crosslinking between different food proteins by transglutaminase. J Food Sci 48:561–566

    Article  CAS  Google Scholar 

  • Navarre WW, Schneewind O (1994) Proteolytic cleavage and cell wall anchoring at the LPXTG motif of surface proteins in Gram-positive bacteria. Mol Microbiol 14:115–121

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuka T, Ota M, Nio N et al (2000) Comparison of substrate specificities of transglutaminases using synthetic peptides as acyl donors. Biosci Biotechnol Biochem 64:2608–2613

    Article  CAS  PubMed  Google Scholar 

  • Okeley NM, Toki BE, Zhang X et al (2013) Metabolic engineering of monoclonal antibody carbohydrates for antibody–drug conjugation. Bioconjug Chem 24:1650–1655

    Article  CAS  PubMed  Google Scholar 

  • Ornes S (2013) Antibody–drug conjugates. Proc Natl Acad Sci U S A 110:13695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pallen MJ, Lam AC, Antonio M et al (2001) An embarrassment of sortases–a richness of substrates? Trends Microbiol 9:97–101

    Article  CAS  PubMed  Google Scholar 

  • Panowski S, Bhakta S, Raab H et al (2014) Site-specific antibody drug conjugates for cancer therapy. MAbs 6:34–45

    Article  PubMed  Google Scholar 

  • Parthasarathy R, Subramanian S, Boder ET (2007) Sortase A as a novel molecular “stapler” for sequence-specific protein conjugation. Bioconjug Chem 18:469–476

    Article  CAS  PubMed  Google Scholar 

  • Pasut G, Veronese FM (2012) State of the art in PEGylation: the great versatility achieved after forty years of research. J Control Release 161:461–472

    Article  CAS  PubMed  Google Scholar 

  • Perez HL, Cardarelli PM, Deshpande S et al (2014) Antibody–drug conjugates: current status and future directions. Drug Discov Today 19:869–881

    Article  CAS  PubMed  Google Scholar 

  • Perry AM, Ton-That H, Mazmanian SK et al (2002) Anchoring of surface proteins to the cell wall of Staphylococcus aureus III Lipid II is an in vivo peptidoglycan substrate for sortase-catalyzed surface protein anchoring. J Biol Chem 277:16241–16248

    Article  CAS  PubMed  Google Scholar 

  • Pharma F (2010) FDA: Pfizer voluntarily withdraws cancer treatment Mylotarg from US market [Online]. Available: https://www.fiercepharma.com/pharma/fda-pfizer-voluntarily-withdraws-cancer-treatment-mylotarg-from-u-s-market. Accessed June 21 2010

  • Rachel NM, Pelletier JN (2013) Biotechnological applications of transglutaminases. Biomol Ther 3:870–888

    Google Scholar 

  • Rashidian M, Dozier JK, Distefano MD (2013) Enzymatic labeling of proteins: techniques and approaches. Bioconjug Chem 24:1277–1294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rickert M, Strop P, Lui V et al (2016) Production of soluble and active microbial transglutaminase in Escherichia coli for site-specific antibody drug conjugation. Protein Sci 25:442–455

    Article  CAS  PubMed  Google Scholar 

  • Roux KJ, Kim DI, Raida M et al (2012) A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J Cell Biol 196:801–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowland A, Pietersz GA, McKenzie IF (1993) Preclinical investigation of the antitumour effects of anti-CD19-idarubicin immunoconjugates. Cancer Immunol Immunother 37:195–202

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto T, Sawamoto S, Tanaka T et al (2010) Enzyme-mediated site-specific antibody-protein modification using a ZZ domain as a linker. Bioconjug Chem 21:2227–2233

    Article  CAS  PubMed  Google Scholar 

  • Schroeder DD, Tankersky DL, Lundblad JL (1981) A new preparation of modified immune serum globulin (human) suitable for intravenous administration. Vox Sang 40:383–394

    Article  CAS  PubMed  Google Scholar 

  • Schumacher D, Hackenberger CP, Leonhardt H et al (2016) Current status: site-specific antibody drug conjugates. J Clin Immunol 36:100–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senter PD, Sievers EL (2012) The discovery and development of brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma. Nat Biotechnol 30:631–637

    Article  CAS  PubMed  Google Scholar 

  • Sesay MA (2003) Monoclonal antibody conjugation via chemical modification. Biopharm Int 16:32–39

    CAS  Google Scholar 

  • Sharkey RM, Goldenberg DM (2008) Use of antibodies and immunoconjugates for the therapy of more accessible cancers. Adv Drug Deliv Rev 60:1407–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinya A, Yamashita K, Kohno H et al (2000) Involvement of transglutaminase in the receptor-mediated endocytosis of mouse peritoneal macrophages. Biol Pharm Bull 23:1511–1513

    Article  Google Scholar 

  • Siegmund V, Schmelz S, Dickgiesser S et al (2015) Locked by design: a conformationally constrained transglutaminase tag enables efficient site-specific conjugation. Angew Chem Int Ed 54:13420–13424

    Article  CAS  Google Scholar 

  • Siegmund V, Piater B, Zakeri B et al (2016) Spontaneous isopeptide bond formation as a powerful tool for engineering site-specific antibody-drug conjugates. Sci Rep 6:39291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith EL, Giddens JP, Iavarone AT et al (2014) Chemoenzymatic Fc glycosylation via engineered aldehyde tags. Bioconjug Chem 25:788–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sochaj AM, Świderska KW, Otlewski J (2015) Current methods for the synthesis of homogeneous antibody–drug conjugates. Biotechnol Adv 33:775–784

    Article  CAS  PubMed  Google Scholar 

  • Spolaore B, Raboni S, Satwekar AA et al (2016) Site-specific transglutaminase-mediated conjugation of interferon α-2b at glutamine or lysine residues. Bioconjug Chem 27:2695–2706

    Article  CAS  PubMed  Google Scholar 

  • Steffen W, Ko FC, Patel J et al (2017) Discovery of a microbial transglutaminase enabling highly site-specific labeling of proteins. J Biol Chem 292:15622–15635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephanopoulos N, Francis MB (2011) Choosing an effective protein bioconjugation strategy. Nat Chem Biol 7:876–884

    Article  CAS  PubMed  Google Scholar 

  • Strop P (2014) Versatility of microbial transglutaminase. Bioconjug Chem 25:855–862

    Article  CAS  PubMed  Google Scholar 

  • Strop P, Dorywalska MG, Rajpal A et al (2012 November 22) Engineered polypeptide conjugates and methods for making thereof using transglutaminase. PCT/IB2011/054899

    Google Scholar 

  • Strop P, Liu S-H, Dorywalska M et al (2013) Location matters: site of conjugation modulates stability and pharmacokinetics of antibody drug conjugates. Chem Biol 20:161–167

    Article  CAS  PubMed  Google Scholar 

  • Strop P, Tran T-T, Dorywalska M et al (2016) RN927C, a site-specific trop-2 antibody–drug conjugate (ADC) with enhanced stability, is highly efficacious in preclinical solid tumor models. Mol Cancer Ther 15:2698–2708

    Article  CAS  PubMed  Google Scholar 

  • Sueda S, Yoneda S, Hayashi H (2011) Site-specific labeling of proteins by using biotin protein ligase conjugated with fluorophores. ChemBioChem 12:1367–1375

    Article  CAS  PubMed  Google Scholar 

  • Suedhoff T, Birckbichler P, Lee K et al (1990) Differential expression of transglutaminase in human erythroleukemia cells in response to retinoic acid. Cancer Res 50:7830–7834

    CAS  PubMed  Google Scholar 

  • Sugimura Y, Hosono M, Wada F et al (2006) Screening for the preferred substrate sequence of transglutaminase using a phage-displayed peptide library identification of peptide substrates for TGASE 2 and factor XIIIA. J Biol Chem 281:17699–17706

    Article  CAS  PubMed  Google Scholar 

  • Sugimura Y, Yokoyama K, Nio N et al (2008) Identification of preferred substrate sequences of microbial transglutaminase from Streptomyces mobaraensis using a phage-displayed peptide library. Arch Biochem Biophys 477:379–383

    Article  CAS  PubMed  Google Scholar 

  • Sun MM, Beam KS, Cerveny CG et al (2005) Reduction− alkylation strategies for the modification of specific monoclonal antibody disulfides. Bioconjug Chem 16:1282–1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swee LK, Guimaraes CP, Sehrawat S et al (2013) Sortase-mediated modification of αDEC205 affords optimization of antigen presentation and immunization against a set of viral epitopes. Proc Natl Acad Sci 110:1428–1433

    Article  PubMed  PubMed Central  Google Scholar 

  • Ta H, Prabhu S, Leitner E et al (2011) Enzymatic single-chain antibody tagging: a universal approach to targeted molecular imaging and cell homing in cardiovascular disease. Circ Res 109:365–373

    Article  CAS  PubMed  Google Scholar 

  • Tesfaw A, Assefa F (2014) Applications of transglutaminase in textile, wool, and leather processing. Int J Tex Sci 3:64–69

    Google Scholar 

  • Theile CS, Witte MD, Blom AE et al (2013) Site-specific N-terminal labeling of proteins using sortase-mediated reactions. Nat Protoc 8:1800

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tong H, Zhang L, Kaspar A et al (2013) Peptide-conjugation induced conformational changes in human IgG1 observed by optimized negative-staining and individual-particle electron tomography. Sci Rep 3:1089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Torres M, Casadevall A (2008) The immunoglobulin constant region contributes to affinity and specificity. Trends Immunol 29:91–97

    Article  CAS  PubMed  Google Scholar 

  • Tsuchikama K, An Z (2016) Antibody-drug conjugates: recent advances in conjugation and linker chemistries. Protein Cell 9(1):1–14

    Google Scholar 

  • van de Donk NW, Dhimolea E (2012) Brentuximab vedotin. MAbs 4:458–465 Taylor & Francis

    Article  PubMed  PubMed Central  Google Scholar 

  • von Behring E, Kitasato S (1890) The mechanism of immunity in animals to diphtheria and tetanus. Deutsche Med Wochenschr 16:1113–1114

    Article  Google Scholar 

  • Wagner K, Kwakkenbos MJ, Claassen YB et al (2014) Bispecific antibody generated with sortase and click chemistry has broad antiinfluenza virus activity. Proc Natl Acad Sci 111:16820–16825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wakankar AA, Feeney MB, Rivera J et al (2010) Physicochemical stability of the antibody− drug conjugate trastuzumab-DM1: changes due to modification and conjugation processes. Bioconjug Chem 21:1588–1595

    Article  CAS  PubMed  Google Scholar 

  • Wen X, Wu Q-P, Lu Y et al (2001) Poly (ethylene glycol)-conjugated anti-EGF receptor antibody C225 with radiometal chelator attached to the termini of polymer chains. Bioconjug Chem 12:545–553

    Article  CAS  PubMed  Google Scholar 

  • Williamson DJ, Fascione MA, Webb ME et al (2012) Efficient N-terminal labeling of proteins by use of sortase. Angew Chem Int Ed 51:9377–9380

    Article  CAS  Google Scholar 

  • Witte MD, Cragnolini JJ, Dougan SK et al (2012) Preparation of unnatural N-to-N and C-to-C protein fusions. Proc Natl Acad Sci 109:11993–11998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witte MD, Theile C, Wu T et al (2013) Production of unnaturally linked chimeric proteins using a combination of sortase-catalyzed transpeptidation and click chemistry. Nat Protoc 8:1808

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu P, Shui W, Carlson BL et al (2009) Site-specific chemical modification of recombinant proteins produced in mammalian cells by using the genetically encoded aldehyde tag. Proc Natl Acad Sci 106:3000–3005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokoyama K, Nio N, Kikuchi Y (2004) Properties and applications of microbial transglutaminase. Appl Microbiol Biotechnol 64:447–454

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama K, Utsumi H, Nakamura T et al (2010) Screening for improved activity of a transglutaminase from Streptomyces mobaraensis created by a novel rational mutagenesis and random mutagenesis. Appl Microbiol Biotechnol 87:2087–2096

    Article  CAS  PubMed  Google Scholar 

  • York D, Baker J, Holder PG et al (2016) Generating aldehyde-tagged antibodies with high titers and high formylglycine yields by supplementing culture media with copper (II). BMC Biotechnol 16:23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Younes A, Bartlett NL, Leonard JP et al (2010) Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med 363:1812–1821

    Article  CAS  PubMed  Google Scholar 

  • Zuberbühler K, Casi G, Bernardes GJ et al (2012) Fucose-specific conjugation of hydrazide derivatives to a vascular-targeting monoclonal antibody in IgG format. Chem Commun 48:7100–7102

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge the support of the Malaysian Ministry of Education through the Higher Institution Centre of Excellence (HICoE) Grant (Grant No.311/CIPPM/44001005) and Universiti Sains Malaysia RUI Grant (1001/CABR/8011045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theam Soon Lim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chan, S.K., Choong, Y.S., Gan, C.Y., Lim, T.S. (2018). Chemoenzymatic Bioconjugation of Antibodies: Linking Proteins for Biomedical Applications. In: Kuddus, M. (eds) Enzymes in Food Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-1933-4_18

Download citation

Publish with us

Policies and ethics