Skip to main content

Biofunctionalization of Various Textile Materials Using Enzyme Biotechnology as a Green Chemistry Alternative

  • Chapter
  • First Online:
Enzymes in Food Technology

Abstract

Dyeing of textiles and textile materials has been going parallel to the human life since time immemorial. Natural protein fibers especially wool, silk, and cotton are widely used for dyeing purposes in the modern textile industrial sectors due to their comfort when wearing. In this chapter, fiber protein structure-function relationships are briefly discussed with enzymatic processing routes of textile materials with respect to the increasing dyeing efficiency and other novel functional applications. Fiber/fabric (wool, silk, cotton) biomodifications are described in detail with respect to various classes of enzymes such as cellulases, lipases, xylanases, oxygenases, proteases, transglutaminase, tyrosinase, and laccase. With the processing and development of new dyeing and finishing strategies, enzymatic treatments have become important environmental friendly technologies which not only fulfill the demand of the traditional textile industry but also improve quality of our life, meet the requirement of textile industrial sectors in terms of minimizing pollution levels, environmental protection levels, comfort, and health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali S, Khatri Z, Khatri A et al (2014) Integrated desizing-bleaching-reactive dyeing process for cotton towel using glucose oxidase enzyme. J Clean Prod 66:562–567

    Article  CAS  Google Scholar 

  • Arami M, Rahimi S, Mivehie L et al (2007) Degumming of Persian silk with mixed proteolytic enzymes. J Appl Polym Sci 106:267–275

    Article  CAS  Google Scholar 

  • Araujo R, Casal M, Cavaco-Paulo A (2008) Application of enzymes for textile fibres processing. Biocatal Biotransformation 26:332–349

    Article  CAS  Google Scholar 

  • Bajpai P (1999) Applications of enzymes in the pulp and paper industry. Biotechnol Prog 15:147–157

    Article  CAS  PubMed  Google Scholar 

  • Baker RA, Wicker L (1996) Current and potential applications of enzyme infusion in the food industry. Trends Food Sci Technol 7:279–284

    Article  CAS  Google Scholar 

  • Basto C, Tzanov T, Cavaco-Paulo A (2007) Combined ultrasound-laccase assisted bleaching of cotton. Ultrason Sonochem 14:350–354

    Article  CAS  PubMed  Google Scholar 

  • Beguin P, Aubert JP (1994) The biological degradation of cellulose. FEMS Microbiol Rev 13:25–58

    Article  CAS  PubMed  Google Scholar 

  • Bishop DP, Shen J, Heine E et al (1998) The use of proteolytic enzymes to reduce wool fiber stiffness and prickle. J Text Inst 89:546–553

    Article  CAS  Google Scholar 

  • Cardamone JM (2007) Enzyme-mediated crosslinking of wool. Part I: transglutaminase. Text Res J 77:214–221

    Article  CAS  Google Scholar 

  • Carmona EC, Pizzinari-Kleiner AA, Monteiro PTR et al (1997) Xylanase production by Aspergillus versicolor. J Basic Microbiol 37:387–393

    Article  Google Scholar 

  • Cavaco-Paulo A (1997) Proceedings. 5th Brazilian Symposium. Chem. Lignins and other wood comp. Curitica 6:404

    Google Scholar 

  • Cavaco-Paulo A (1998) Processing textile fibers with enzymes: an overview. ACS Symp Ser 687:180–189

    Article  CAS  Google Scholar 

  • Cavaco-Paulo A, Almeida L (1994) Cellulase hydrolysis of cotton cellulose: the effects of mechanical action, enzyme concentration and dyed substrates. Biocatalysis 10:353–360

    Article  CAS  Google Scholar 

  • Cavaco-Paulo A, Almeida L (1996) Kinetic parameters measured during cellulase processing of cotton. J Text Inst 87:227–233

    Article  CAS  Google Scholar 

  • Cavaco-Paulo A, Almeida L, Bishop D (1996a) Cellulase activities and finishing effects. Text Chem Colorist 28:28–32

    CAS  Google Scholar 

  • Cavaco-Paulo A, Almeida L, Bishop D (1996b) Effects of agitation and endoglucanase pretreatment on the hydrolysis of cotton fabrics by a total cellulase. Text Res J 66:287–294

    Article  CAS  Google Scholar 

  • Cavaco-Paulo A, Almeida L, Bishop D (1998a) Hydrolysis of cotton cellulose by engineered cellulases from Trichoderma reesei. Text Res J 68:273–280

    Article  CAS  Google Scholar 

  • Cavaco-Paulo A, Morgando J, Almeida L et al (1998b) Indigo backstaining during cellulase washing. Text Res J 68:398–401

    Article  CAS  Google Scholar 

  • Cegarra J (1996) The state of the art in textile biotechnology. J Soc Dye Colour 112:326–329

    Article  CAS  Google Scholar 

  • Chen L, Liu YS, Wang Y (2010) Impact of different shrink-proof methods on wool properties. J Text Res 8:21–25

    Google Scholar 

  • Chesson A (1987) Supplementary enzymes to improve the utilization of pigs and poultry diets. In: Haresign W, Cole DJA (eds) Recent advances in animal nutrition. Butterworths, London, pp 71–89

    Chapter  Google Scholar 

  • Chikkodi SV, Khan S, Mehta RD (1995) Effects of biofinishing on cotton/wool blended fabrics. Text Res J 65:564

    Article  CAS  Google Scholar 

  • Collighan R, Cortez J, Griffin M (2002) The biotechnological applications of transglutaminases. Minerva Biotechnolog 14:143–148

    Google Scholar 

  • Cook JC (1984) Handbook of textile fibres: natural fibres. Woodhead Publishing Ltd, Cambridge

    Book  Google Scholar 

  • Cortez J, Anghieri A, Bonner PLR et al (2007) Transglutaminase mediated grafting of silk proteins onto wool fabrics leading to improved physical and mechanical properties. Enzym Microb Technol 40:1698–1704

    Article  CAS  Google Scholar 

  • Cortez J, Bonner PLR, Griffin M (2004) Application of transglutaminase in the modification of wool textile. Enzym Microb Technol 34:64–72

    Article  CAS  Google Scholar 

  • Cortez J, Bonner PLR, Griffin M (2005) Transglutaminase treatment of wool fabrics leads to resistance to detergent damage. J Biotechnol 116:379–386

    Article  PubMed  CAS  Google Scholar 

  • Couto SR, Taco-Herrera JL (2006) Laccases in the textile industry. Biotechnol Mol Biol Rev 1:115–120

    Google Scholar 

  • Cui L, Du G, Chen J et al (2008) Effect of microbial transglutaminase on dyeing properties of natural dyes on wool fabric. Biocatal Biotransformation 26:399–404

    Article  CAS  Google Scholar 

  • Du GC, Cui L, Zhu Y et al (2007) Improvement of shrink-resistance and tensile strength of wool fabric treated with a novel microbial transglutaminase from Streptomyces hygroscopicus. Enzym Microb Technol 40:1753–1757

    Article  CAS  Google Scholar 

  • Duran N, Duran M (2000) Enzyme applications in the textile industry. Rev Prog Color 30:41–44

    Article  CAS  Google Scholar 

  • Freddi G, Anghileri A, Sampaio S et al (2006) Tyrosinase-catalyzed modification of Bombyx mori silk fibroin: grafting of chitosan under heterogeneous reaction conditions. J Biotechnol 125:281–294

    Article  CAS  PubMed  Google Scholar 

  • Fu J, Su J, Wang P et al (2015) Enzymatic processing of protein-based fibers. Appl Microbiol Biotechnol 99:10387–10397

    Article  CAS  PubMed  Google Scholar 

  • Gaffar-Hossain KM, Juan AR, Tzanov T (2008) Simultaneous protease and transglutaminase treatment for shrink resistance of wool. Biocatal Biotransformation 26:405–411

    Article  CAS  Google Scholar 

  • Galante YM, DeConti A, Monteverdi R (1998) Application of Trichoderma enzymes in textile industry. In: Harman GF, Kubicek CP (eds) Trichoderma and Gliocladium-enzymes, biological control and commercial applications, vol 2. Taylor & Francis, London, pp 311–326

    Google Scholar 

  • Ge F, Cai Z, Zhang H et al (2009) Transglutaminase treatment for improving wool fabric properties. Fibre Polym 10:787–790

    Article  CAS  Google Scholar 

  • Godfrey T (1996) Textiles. In: Godfrey T, West S (eds) Industrial enzymology, 2nd edn. Macmillan Press, London, pp 360–371

    Google Scholar 

  • Griffin M, Casadio R, Berqamini CM (2002) Transglutaminases: nature’s biological glues. Biochem J 368:377–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gulrajani ML, Agarwal R, Grover A et al (2000) Degumming of silk with lipase and protease. Ind J Fibre Text Res 25:69–74

    CAS  Google Scholar 

  • Hall DM, Adanur S, Broughton RM Jr et al (1995) Natural and man made fibers. In: Adanur S (ed) Wellington sears handbook of industrial textiles, 1st edn. CRC Press, New Holland, Boca Raton, pp 37–52

    Google Scholar 

  • Heikinheimo L, Cavaco-Paulo A, Nousiainen P et al (1998) Treatment of cotton fabrics with purified Trichoderma reesei cellulases. J Soc Dye Color 114:216–220

    Article  CAS  Google Scholar 

  • Hsieh YL, Cram LA (1998) Enzymatic hydrolysis to improve wetting and absorbency of polyester fabrics. Text Res J 68:311–319

    Article  CAS  Google Scholar 

  • Islam S, Shahid M, Mohammad F (2013) Perspectives for natural product based agents derived from industrial plants in textile applications – a review. J Clean Prod 57:2–18

    Article  Google Scholar 

  • Jus S, Schroeder M, Guebitz GM et al (2007) The influence of enzymatic treatment on wool fiber properties using PEG-modified protease. Enzym Microb Technol 40:1705–1711

    Article  CAS  Google Scholar 

  • Khan SA, Islam S, Shahid M et al (2015) Mixed metal mordant dyeing of wool using root extract of Rheum emodi (Indian Rhubarb/Dolu). J Nat Fibre 12:243–255

    Article  CAS  Google Scholar 

  • Klug-Santner BG, SchnitzhoferW VM et al (2006) Purification and characterization of a new bioscouring pectate lyase from Bacillus pumilus BK2. J Biotechnol 121:390–401

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Lepola M, Purtell C (1994) Enzyme finishing of man-made cellulosic fabrics. Text Chem Colour 26:25–28

    CAS  Google Scholar 

  • Kyriakides ML, Tsatsaroni E, Laderos P et al (1998) Dyeing of cotton and wool fibres with pigments from Crocus sativus—effect of enzymatic treatment. Dyes Pigments 36:215–221

    Article  Google Scholar 

  • Lantto R, Heine E, Freddi G et al (2005) Enzymatic modification of wool with tyrosinase and peroxidase. JOTI 96:109–116

    Article  CAS  Google Scholar 

  • Lantto R, Schönberg C, Buchert J et al (2004) Effects of laccase mediator combinations on wool. Text Res J 74:713–717

    Article  CAS  Google Scholar 

  • Maryan AS, Montazer M (2013) A cleaner production of denim garment using one step treatment with amylase/cellulase/laccase. J Clean Prod 57:320–326

    Article  CAS  Google Scholar 

  • McDevitt JP, Winkler J (2000) Method for enzymatic treatment of wool. U.S. WO 1999060200

    Google Scholar 

  • Milagres AMF, Prade RA (1994) Production of xylanases from Penicillium janthinellum and its use in the recovery of cellulosic textile fibers. Enzym Microb Technol 16:627–632

    Article  CAS  Google Scholar 

  • Montazer M, Dadashian F, Hemmatinejad N et al (2009) Treatment of wool with laccase and dyeing with madder. Appl Biochem Biotechnol 158:685–693

    Article  CAS  PubMed  Google Scholar 

  • Montazer M, Lessan F, Pajootan E et al (2011) Treatment of bleached wool with trans-glutaminases to enhance tensile strength, whiteness, and alkali resistance. Appl Biochem Biotech 165:748–759

    Article  CAS  Google Scholar 

  • Montazer M, Pajootan E, Lessan F (2012) Microbial trans-glutaminase enhances the physical and mechanical properties of depigmented wool. Eng Life Sci 12:216–222

    Article  CAS  Google Scholar 

  • Oliva C, Freddi G, Repetto S et al (2003) Electron paramagnetic resonance and ultraviolet/visible study of compounds I and II in the horseradish peroxidase-H2O2-silk fiber reaction system. Spectrochim Acta Part A 59:1911–1917

    Article  CAS  Google Scholar 

  • Parvinzadeh M (2007) Effect of proteolytic enzyme on dyeing of wool with madder. Enzym Microb Technol 40:1719–1722

    Article  CAS  Google Scholar 

  • Pereira L, Bastos C, Tzanov T et al (2005) Environmentally friendly bleaching of cotton using laccases. Environ Chem Lett 3:66–69

    Article  CAS  Google Scholar 

  • Queiroga AC, Pintado ME, Malcata FX (2012) Potential use of wool-associated Bacillus species for biodegradation of keratinous materials. Int Biodeterior Biodegrad 70:60–65

    Article  CAS  Google Scholar 

  • Rather LJ, Akhter S, Padder RA et al (2017) Colorful and semi durable antioxidant finish of woolen yarn with tannin rich extract of Acacia nilotica natural dye. Dyes Pigments 139:812–819

    Article  CAS  Google Scholar 

  • Rather LJ, Islam S, Azam M et al (2016c) Antimicrobial and fluorescence finishing of woolen yarn with Terminalia arjuna natural dye as an ecofriendly substitute to synthetic antibacterial agents. RSC Adv 6:39080–39094

    Article  CAS  Google Scholar 

  • Rather LJ, Islam S, Khan MA et al (2016b) Adsorption and kinetic studies of Adhatoda vasica natural dye onto woolen yarn with evaluations of colorimetric and fluorescence characteristics. J Environ Chem Eng 4:1780–1796

    Article  CAS  Google Scholar 

  • Rather LJ, Islam S, Mohammad F (2015) Study on the application of Acacia nilotica natural dye using fluorescence and FT-IR spectroscopy. Fibers Polym 16:1497–1505

    Article  CAS  Google Scholar 

  • Rather LJ, Islam S, Shabbir M et al (2016a) Ecological dyeing of woolen yarn with Adhatoda vasica natural dye in the presence of biomordants as an alternative copartner to metal mordants. J Environ Chem Eng 4:3041–3049

    Article  CAS  Google Scholar 

  • Robson RM (2006) Silk: composition, structure and properties. In: Lewin M, Pearce EM (eds) Handbook of fiber chemistry, 3rd edn. Marvel Decker Inc., New York, pp 382–404

    Google Scholar 

  • Setti L, Giuliani S, Spinozzi G et al (1999) Laccase catalyzedoxidative coupling of 3-methyl 2-benzothiazolinone hydrazone and methoxyphenols. Enzym Microb Technol 25:285–289

    Article  CAS  Google Scholar 

  • Shahid M, Islam S, Mohammad F (2013) Recent advancements in natural dye applications: a review. J Clean Prod 53:310–331

    Article  CAS  Google Scholar 

  • Simpson WS, Grawshaw GH (2002) Wool science and technology. CRC Press Inc., Boca Raton

    Book  Google Scholar 

  • Singh A, Kuhad RC, Ward OP (2007) Industrial application of microbial cellulases. In: Kuhad RC, Singh A (eds) Lignocellulose biotechnology: future prospects. I.K. International Publishing House, New Delhi, pp 345–358

    Google Scholar 

  • Sreenath HK, Shah AB, Yang VW et al (1996) Enzymatic polishing of jute/cotton blended fabrics. J Ferment Bioenerg 81:18–20

    Article  CAS  Google Scholar 

  • Sricharussin W, Ree-iam P, Phanomchoeng W et al (2009) Effect of enzymatic treatment on the dyeing of pineapple leaf fibres with natural dyes. Sci Asia 35:31–36

    Article  CAS  Google Scholar 

  • Sukumaran RK, Singhania RR, Pandey A (2005) Microbial cellulases – production, applications and challenges. J Sci Ind Res 64:832–844

    CAS  Google Scholar 

  • Sun SS, Xing TL, Tang RC (2013) Simultaneous coloration and functionalization of wool, silk, and nylon with the tyrosinase catalyzed oxidation products of caffeic acid. Ind Eng Chem Res 52:8953–8961

    Article  CAS  Google Scholar 

  • Thomke S, Rundgreen M, Hesselman K (1980) The effect of feeding high-viscosity barley to pigs. In: Proceedings of the 31st meeting of the European association of animal production, commission on animal production, Munich, Germany, p 5

    Google Scholar 

  • Trotman ER (1984) Dyeing and chemical technology of textile fibres. Wiley, Hoboken

    Google Scholar 

  • Tsatsaroni E, Liakopoulou-kyriakides M (1995) Effects of enzymatic treatment on the dyeing of cotton and wool fibres with natural dyes. Dyes Pigments 29:203–209

    Article  CAS  Google Scholar 

  • Tsatsaroni E, Liakopoulou-kyriakides M, Eleftheriadis I (1998) Comparative study of dyeing properties of two yellow natural pigments: effects of enzymes and proteins. Dyes Pigments 37:307

    Article  CAS  Google Scholar 

  • Tzanov T, Andreaus J, Guebitz G et al (2003b) Protein interactions in enzymatic processes in textiles. Electron J Biotechnol 6:146–154

    Google Scholar 

  • Tzanov T, Basto C, Guebitz GM et al (2003a) Laccases to improve the whiteness in a conventional bleaching of cotton. Macromolec Mater Eng 288:807–810

    Article  CAS  Google Scholar 

  • Uhlig H (1998) Industrial enzymes and their applications. Wiley, New York

    Google Scholar 

  • Vankar PS, Shanker R, Verma A (2007) Enzymatic natural dyeing of cotton and silk fabrics without metal mordants. J Clean Prod 15:1441–1450

    Article  Google Scholar 

  • Voragen AGJ (1992) Tailor-made enzymes in fruit juice processing. Fruit Process 7:98–102

    Google Scholar 

  • Voragen AGJ, Wolters H, Verdonschot-Kroef T et al (1986) Effect of juice-releasing enzyme on juice quality. In: International fruit juice symposium, The Hague/Zurich: Juris Druck Verlag, pp 453–462

    Google Scholar 

  • Wakelyn PJ, Bertoniere NR, French AD (2007) Cotton fiber chemistry and technology. CRC Press, Boca Raton

    Google Scholar 

  • Yao L, Zhu YW, Zhu JC (2009) Effect of oxidant and proteolytic enzyme treatment on the structure and properties of wool. Wool Text J 6:32–35

    Google Scholar 

  • Zhang R, Cai Z, Zhang H (2010) Studies on the remedial effect of transglutaminase on protease anti-felting treated wool. J Text Inst 101:1015–1021

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Financial support provided by University Grants Commission, Govt. of India, New Delhi through Maulana Azad National Fellowship (MANF) for Sabiyah Akhter is highly acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rather, L.J., Akhter, S., Hassan, Q.P., Mohammad, F. (2018). Biofunctionalization of Various Textile Materials Using Enzyme Biotechnology as a Green Chemistry Alternative. In: Kuddus, M. (eds) Enzymes in Food Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-1933-4_13

Download citation

Publish with us

Policies and ethics