Skip to main content

Halophilic Archaeal Lipases and Esterases: Activity, Stability, and Food Applications

  • Chapter
  • First Online:
Book cover Enzymes in Food Technology

Abstract

Lipases and esterases are able to hydrolyze triglycerides, and they are important biocatalysts in food industry. There are many sources of these enzymes. One of the most interesting and unexplored sources of microbial lipases/esterases is the Archaea domain. Most of the archaea produces “extremozymes” that are able to act at harsh conditions such as high temperature, acidic or alkaline pH, high pressure, etc. Particularly, halophilic archaea is a group of microorganisms able to produce lipases and esterases active at a high salt concentration. Nowadays, only a few lipases/esterases from halophilic archaea have been described; however, the reports indicate that halophilic archaeal lipases/esterases are stable at neutral pH, high salt concentration, high temperature, and in hydrophilic solvents. This chapter describes the special features of halophilic archaeal lipases and esterases characterized until now and optimal conditions for their activity and solvent stability. Their substrate preferences were analyzed. Halophilic archaeal lipase/esterase sequences reported in different databases were analyzed. With this analysis we found the evidence of the typical characteristics of lipases/esterases from halophilic archaea: acidic isoelectric point, low molecular weight, and a high content of aspartic and glutamic amino acids. The few halophilic lipases and esterases characterized until now show a preference to hydrolyze vinyl esters and mono- and diglycerides with low activity in triglycerides. Studies on the application of halophilic lipases and esterases in food industry are scarce. However, they have great potential in some processes, like in synthesis of high-value products like structured lipids useful as food additives. The use of lipolytic archaeal enzymes in seafood ripening is an emerging trend. An extensive research is needed in order to develop food applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almeida RV, Alquéres SMC, Larentis AL et al (2006) Cloning, expression, partial characterization and structural modeling of a novel esterase from Pyrococcus furiosus. Enzym Microb 39(5):1128–1136

    Article  CAS  Google Scholar 

  • Alquéres SMC, Almeida RV, Clementino MM et al (2007) Exploring the biotechnological applications in the archaeal domain. Braz J 38(3):398–405

    Google Scholar 

  • Antunes A, Simões MF, Grötzinger SW et al (2017) Bioprospecting Archaea: focus on extreme Halophiles. In: Bioprospecting. Springer, Cham, pp 81–112

    Chapter  Google Scholar 

  • Anwar T, Chauhan RS (2012) Computational analysis of halotolerance genes from halophilic prokaryotes to infer their signature sequences. Int J Adv Biotechnol 1(1):69–78

    Google Scholar 

  • Aponte M, Blaiotta G, Francesca N et al (2010) Could halophilic archaea improve the traditional salted anchovies (Engraulis encrasicholus L.) safety and quality? Lett Appl Microbiol 51(6):697–703

    Article  CAS  Google Scholar 

  • Aulakh SS, Prakash R (2010) Optimization of medium and process parameters for the production of lipase from an oil-tolerant Aspergillus sp. (RBD-01). J Basic Microbiol 50(1):37–42

    Article  CAS  Google Scholar 

  • Bhatnagar T, Boutaiba S, Hacene H et al (2005) Lipolytic activity from Halobacteria: screening and hydrolase production. FEMS Microbiol Lett 248(2):133–140

    Article  CAS  Google Scholar 

  • Bolhuis A, Kwan D, Thomas JR (2008) Halophilic adaptations of proteins. In: Protein adaptation in extremophiles. Nova, New York, pp 71–104

    Google Scholar 

  • Boutaiba S, Bhatnagar T, Hacene H et al (2006) Preliminary characterisation of a lipolytic activity from an extremely halophilic archaeon, Natronococcus sp. J Mol Catal B Enzym 41(1):21–26

    Article  CAS  Google Scholar 

  • Camacho RM, Mateos JC, González-Reynoso O et al (2009) Production and characterization of esterase and lipase from Haloarcula marismortui. J Ind Microbiol Biotechnol 36(7):901–909

    Article  CAS  Google Scholar 

  • Camacho RM, Mateos-Díaz JC, Diaz-Montaño DM et al (2010) Carboxyl ester hydrolases production and growth of a halophilic archaeon, Halobacterium sp. NRC-1. Extremophiles 14(1):99–106

    Article  CAS  Google Scholar 

  • DasSarma S, DasSarma P (2015) Halophiles and their enzymes: negativity put to good use. Curr Opin Microbiol 25:120–126

    Article  CAS  Google Scholar 

  • Delgado-García M, Valdivia-Urdiales B, Aguilar-Gonzalez CN et al (2012) Halophilic hydrolases as a new tool for the biotechnological industries. J Sci Food Agric 92(13):2575–2580

    Article  Google Scholar 

  • Demirjian DC, Morıs-Varas F, Cassidy CS (2001) Enzymes from extremophiles. Curr Opin Chem Biol 5(2):144–151

    Article  CAS  Google Scholar 

  • Doukyu N, Ogino H (2010) Organic solvent-tolerant enzymes. Biochem Eng J 48(3):270–282

    Article  CAS  Google Scholar 

  • Ebel C, Madern D, Zaccai G (2009) Molecular adaptation of halophilic proteins. In: Extremophiles, vol II. Eolss, Oxford, pp 278–297

    Google Scholar 

  • Elleuche S, Schröder C, Sahm K et al (2014) Extremozymes—biocatalysts with unique properties from extremophilic microorganisms. Curr Opin Biotechnol 29:116–123

    Article  CAS  Google Scholar 

  • Ellis RJ, Minton AP (2006) Protein aggregation in crowded environments. Biol Chem 387(5):485–497

    Article  CAS  Google Scholar 

  • Enache M, Kamekura M (2010) Hydrolytic enzymes of halophilic microorganisms and their economic values. Rom J Biochem 47(1):47–59

    CAS  Google Scholar 

  • Goldberg AL (2003) Protein degradation and protection against misfolded or damaged proteins. Nature 426(6989):895–899

    Article  CAS  Google Scholar 

  • Gupta A, Kagliwal LD, Singhal RS (2013) Biotransformation of polyphenols for improved bioavailability and processing stability. Adv Food Nutr Res 69:183–217

    Article  Google Scholar 

  • Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzym Microb Technol 39(2):235–251

    Article  CAS  Google Scholar 

  • Hess M, Katzer M, Antranikian G (2008) Extremely thermostable esterases from the thermoacidophilic euryarchaeon Picrophilus torridus. Extremophiles 12(3):351–364

    Article  CAS  Google Scholar 

  • Hoesl MG, Acevedo-Rocha CG, Nehring S et al (2011) Lipase congeners designed by genetic code engineering. ChemCatChem 3(1):213–221

    Article  CAS  Google Scholar 

  • Horikoshi K, Bull A (2011) Prologue: definition, categories, distribution, origin and evolution, pioneering studies, and emerging fields of extremophiles. In: Extremophiles handbook. Springer, Tokyo, pp 3–15

    Chapter  Google Scholar 

  • Hotta Y, Ezaki S, Atomi H et al (2002) Extremely stable and versatile carboxylesterase from a hyperthermophilic archaeon. Appl Environ Microbiol 68(8):3925–3931

    Article  CAS  Google Scholar 

  • Jordan SN, Mullen GJ (2007) Enzymatic hydrolysis of organic waste materials in a solid–liquid system. Waste Manag 27(12):1820–1828

    Article  CAS  Google Scholar 

  • Kanlayakrit W, Boonpan A (2007) Screening of halophilic lipase-producing bacteria and characterization of enzyme for fish sauce quality improvement. Kasetsart J Nat Sci 41:576–585

    CAS  Google Scholar 

  • Karan R, Capes MD, DasSarma S (2012) Function and biotechnology of extremophilic enzymes in low water activity. Aquat Biosys 8(1):4

    Article  CAS  Google Scholar 

  • Kawasaki K, Kondo H, Suzuki M et al (2002) Alternate conformations observed in catalytic serine of Bacillus subtilis lipase determined at 1.3 Å resolution. Acta Crystallogr Sect D Biol Crystallogr 58(7):1168–1174

    Article  Google Scholar 

  • Kumar A, Kanwar SS (2012) Lipase production in solid-state fermentation (SSF): recent developments and biotechnological applications. Dyn Biochem Process Biotechnol Mol Biol 6(1):13–27

    Google Scholar 

  • Li X, Yu HY (2014) Characterization of an organic solvent-tolerant lipase from Haloarcula sp. G41 and its application for biodiesel production. Folia Microbiol 59(6):455–463

    Article  CAS  Google Scholar 

  • Litchfield CD (2011) Potential for industrial products from the halophilic Archaea. J Ind Microbiol Biotechnol 38(10):1635

    Article  CAS  Google Scholar 

  • López-López O, Cerdan ME, Gonzalez-Siso M (2014) New extremophilic lipases and esterases from metagenomics. Curr Protein Pept Sci 15(5):445

    Article  Google Scholar 

  • Luo H, Robb FT (2011) A modulator domain controlling thermal stability in the Group II chaperonins of Archaea. Arch Biochem Biophys 512(1):111–118

    Article  CAS  Google Scholar 

  • Madern D, Zaccai G (2004) Molecular adaptation: the malate dehydrogenase from the extreme halophilic bacterium Salinibacter ruber behaves like a non-halophilic protein. Biochimie 86(4):295–303

    Article  CAS  Google Scholar 

  • Martin-del-Campo M, Camacho RM, Mateos-Díaz JC et al (2015) Solid-state fermentation as a potential technique for esterase/lipase production by halophilic archaea. Extremophiles 19(6):1121–1132

    Article  CAS  Google Scholar 

  • Marusenko Y, Bates ST, Anderson I et al (2013) Ammonia-oxidizing archaea and bacteria are structured by geography in biological soil crusts across North American arid lands. Ecol Process 2(1):1–10

    Article  Google Scholar 

  • Mhetras NC, Bastawde KB, Gokhale DV (2009) Purification and characterization of acidic lipase from Aspergillus Niger NCIM 1207. Bioresour Technol 100(3):1486–1490

    Article  CAS  Google Scholar 

  • Moreno ML, Márquez M, García MT et al (2016) Halophilic bacteria and Archaea as producers of Lipolytic enzymes. In: Biotechnology of Extremophiles. Springer, Cham, pp 375–397

    Chapter  Google Scholar 

  • Müller-Santos M, Souza EM, Pedrosa FO et al (2009) First evidence for the salt-dependent folding and activity of an esterase from the halophilic archaea Haloarcula marismortui. BBA Mol Cell Biol Lipids 1791(8):719–729

    Article  Google Scholar 

  • Oren A (2013) Life at high salt concentrations, intracellular KCl concentrations, and acidic proteomes. Front Microbiol 4:315

    Article  Google Scholar 

  • Ozcan B, Ozyilmaz G, Cokmus C et al (2009) Characterization of extracellular esterase and lipase activities from five halophilic archaeal strains. J Ind Microbiol Biotechnol 36(1):105–110

    Article  CAS  Google Scholar 

  • Ozcan B, Ozyilmaz G, Cihan A et al (2012) Phylogenetic analysis and characterization of lipolytic activity of halophilic archaeal isolates. Мicrobiol 81(2):186–194

    CAS  Google Scholar 

  • Patel GB, Zhou H, KuoLee R et al (2004) Archaeosomes as adjuvants for combination vaccines. J Liposome Res 14(3–4):191–102

    Article  CAS  Google Scholar 

  • Paul S, Bag SK, Das S et al (2008) Molecular signature of hypersaline adaptation: insights from genome and proteome composition of halophilic prokaryotes. Genome Biol 9(4):R70

    Article  Google Scholar 

  • Ramadas V, Ramadoss RL (2012) Production, purification and characterization of Lipase isolated from salt water Halobacterium sp. Int J Mod Eng Res 2(4):1464–1472

    Google Scholar 

  • Rao L, Zhao X, Pan F et al (2009) Solution behavior and activity of a halophilic esterase under high salt concentration. PLoS One 4(9):e6980

    Article  Google Scholar 

  • Ravot G, Buteux D, Favre-Bulle O et al (2004) Screening for thermostable esterases: from deep sea to industry. Eng Life Sci 4(6):533–538

    Article  CAS  Google Scholar 

  • Reed CJ, Lewis H, Trejo E et al (2013) Protein adaptations in archaeal extremophiles. Archaea 2013:1–14

    Article  Google Scholar 

  • Salameh MD, Wiegel J (2007) Lipases from extremophiles and potential for industrial applications. Adv Appl Microbiol 61(253283):61007–61001

    Google Scholar 

  • Salihu A, Alam MZ (2015) Solvent tolerant lipases: a review. Process Biochem 50(1):86–96

    Article  CAS  Google Scholar 

  • Schreck SD, Grunden AM (2014) Biotechnological applications of halophilic lipases and thioesterases. Appl Microbiol Biotechnol 98(3):1011–1021

    Article  CAS  Google Scholar 

  • Sharma S, Kanwar SS (2014) Organic solvent tolerant lipases and applications. Sci World J 2014:1–15

    Google Scholar 

  • Sharma R, Thakur V, Sharma M et al (2013) Biocatalysts through thermostable lipases: adding flavor to chemistry. In: Thermophilic microbes. Springer, Dodrecht, pp 905–927

    Google Scholar 

  • Siglioccolo A, Paiardini A, Piscitelli M et al (2011) Structural adaptation of extreme halophilic proteins through decrease of conserved hydrophobic contact surface. BMC Struct Biol 11(1):50

    Article  CAS  Google Scholar 

  • Tadeo X, López-Méndez B, Trigueros T et al (2009) Structural basis for the amino acid composition of proteins from halophilic archaea. PLoS Biol 7(12):2821

    Article  Google Scholar 

  • Teo JW, Zhang LH, Poh CL (2003) Cloning and characterization of a novel lipase from Vibrio harveyi strain AP6. Gene 312:181–188

    Article  CAS  Google Scholar 

  • Vauclare P, Madern D, Girard E et al (2014) New insights into microbial adaptation to extreme saline environments. In: BIO Web of conferences, EDP Sciencies, (2) p 02001

    Article  Google Scholar 

  • Węgrzyn A, Żukrowski K (2014) Biotechnological applications of archaeal extremozymes. Chem Nauk 68(8):710–722

    Google Scholar 

  • Woodley JM, Breuer M, Mink D (2013) A future perspective on the role of industrial biotechnology for chemicals production. Chem Eng Res Des 91(10):2029–2036

    Article  CAS  Google Scholar 

  • Zaparty M, Siebers B (2011) Physiology, metabolism, and enzymology of Thermoacidophiles. In: Extremophiles handbook. Springer, Tokyo, pp 601–639

    Chapter  Google Scholar 

Download references

Acknowledgments

Delgado-Garcia M. thanks to CONACYT (National Council of Science and Technology) for their financial support of D.Sc. studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Camacho-Ruíz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Delgado-García, M., Rodríguez, J.A., Mateos-Díaz, J.C., Aguilar, C.N., Rodríguez-Herrera, R., Camacho-Ruíz, R.M. (2018). Halophilic Archaeal Lipases and Esterases: Activity, Stability, and Food Applications. In: Kuddus, M. (eds) Enzymes in Food Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-1933-4_12

Download citation

Publish with us

Policies and ethics