Skip to main content

Computational Modeling and Parametric Analysis of an Implantable Patch Antenna Using Finite-Difference Time-Domain Algorithm

  • Conference paper
  • First Online:
Smart Intelligent Computing and Applications

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 104))

  • 993 Accesses

Abstract

A bio-compatible implantable microstrip patch antenna is designed and analyzed for Implant Communications Services using the finite-difference time-domain (FDTD) method. The space in the patch area of the basic spiral antenna is efficiently used and hence modified. Here, the modified antenna represents a simple structure and is found to have higher gain, lower return loss, lower specific absorption rate (SAR), and a high radiation efficiency of about 73%. The performance characteristics of the antenna have also been evaluated using FEKO software, and the results are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Greatbatch, W., Holmes, C.F.: History of implantable devices. IEEE Eng. Med. Biol. 10(3), 38–49 (1991)

    Article  Google Scholar 

  2. Ibraheem, A., Manteghi, M.: Performance of an implanted electrically coupled loop antenna inside human body. Prog. Electromagn. Res. 145, 195–202 (2014)

    Article  Google Scholar 

  3. Soontornpipit, P., Furse, C.M., Chung, Y.C.: Design of implantable microstrip antenna for communication with medical implants. IEEE Trans. Microw. Theory Tech. 52(8), 1944–1954 (2004)

    Article  Google Scholar 

  4. Percaz, J.M., Chudzik, M., Arnedo, I., Arregui, I., Teberio, F., Laso, M.A.G., Lopetegi, T.: Producing and exploiting simultaneously the forward and backward coupling in EBG-assisted microstrip coupled lines. IEEE Antennas Wirel. Propag. Lett. 15, 873–876 (2016)

    Article  Google Scholar 

  5. Karacolak, T., Hood, A.Z., Topsakal, E.: Design of a dual-band implantable antenna and development of skin mimicking gels for continuous glucose monitoring. IEEE Trans. Microw. Theory Tech. 56(4), 1001–1008 (2008)

    Article  Google Scholar 

  6. Liu, C., Guo, Y.-X., Xiao, S.: A Review of implantable antennas for wireless biomedical devices. In: Forum for Electromagnetic Research Methods Application Technologies (FERMAT)

    Google Scholar 

  7. Mary Neebha, T., Nesasudha, M.: Design and analysis of advanced microstrip patch antenna for endoscopic capsules. Wiley Period. Microw. Opt. Technol. Lett. 58(7), 1762–1767 (2016)

    Article  Google Scholar 

  8. Iqbal Faruque1, M.R., Misran, N., Tariqul Islam, M., Yatim, B., Bias, B.: New low specific absorption rate (SAR) antenna design for mobile handset. Int. J. Phys. Scie. 6(24), 5706–5715 (2011)

    Google Scholar 

  9. Valiev, M., et al.: NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput. Phys. Commun. 181, 1477–1489 (2010)

    Article  Google Scholar 

  10. Kim, J., Rahmat-Samii, Y.: Implanted antennas inside a human body: simulations, designs, and characterizations. IEEE Trans. Microw. Theory Tech. 52(8), 1934–1943 (2004)

    Article  Google Scholar 

  11. Evangeline Chrysolite, R., Divya Priya, A., Sushmitha, R.G., Manvitha, R.J., Mary Neebha, T., Nesasudha, M.: Design and analysis of bio-compatible implantable patch antenna. In: National Conference on Signal Processing Information and Communication Engineering (2016)

    Google Scholar 

  12. Paker, S., Sevgi, L.: FDTD evaluation of the SAR distribution in a human head near a mobile cellular phone. Turk. J. Electr. Eng. Comput. Sci. (Elektrik) 6(3), 345–350 1998

    Google Scholar 

  13. Yee, K.S.: Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. Ap-14(3), 302–307 (1966)

    Google Scholar 

  14. Ali, M.F., Ray, S.: FDTD based SAR analysis in human head using irregular volume averaging techniques of different resolutions at 900 band. Indian J. Radio Space Phys. 43, 235–242 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Mary Neebha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mary Neebha, T., Nesasudha, M., Chrysolite, E. (2019). Computational Modeling and Parametric Analysis of an Implantable Patch Antenna Using Finite-Difference Time-Domain Algorithm. In: Satapathy, S., Bhateja, V., Das, S. (eds) Smart Intelligent Computing and Applications . Smart Innovation, Systems and Technologies, vol 104. Springer, Singapore. https://doi.org/10.1007/978-981-13-1921-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1921-1_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1920-4

  • Online ISBN: 978-981-13-1921-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics