Skip to main content

2′,4′-Bridged Nucleic Acids Containing Plural Heteroatoms in the Bridge Moiety

  • Chapter
  • First Online:
Synthesis of Therapeutic Oligonucleotides
  • 1689 Accesses

Abstract

Bridge modifications between the 2′- and 4′-positions of a nucleoside have attracted much attention for improving properties of nucleic acid drugs, and many classes of 2′,4′-bridged nucleic acids have been developed to date. Evaluation of oligonucleotides containing 2′,4′-bridged nucleic acids suggests that, in addition to the bridge size, the number, type, and position of atoms composing the bridge unit affect (i) the binding affinity to target nucleic acid, (ii) resistance against nuclease degradation, and other factors. The addition of plural heteroatoms is an attractive bridge modification because interaction of the heteroatom with water can affect the properties of the oligonucleotides. In this chapter, focusing on 2′,4′-bridged nucleic acids containing plural heteroatoms in the bridge moiety, we mainly describe the design concept and synthesis. In addition, properties of 2′,4′-bridged nucleic acids are briefly explained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singh SK, Koshkin AA, Wengel J, Nielsen P (1998) LNA (locked nucleic acids): synthesis and high-affinity nucleic acid recognition. Chem Commun: 455–456

    Google Scholar 

  2. Koshkin AA, Singh SK, Nielsen P, Rajwanshi VK, Kumar R, Meldgaard M, Olsen CE, Wengel J (1998) LNA (locked nucleic acids): synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition. Tetrahedron 54:3607–3630

    Article  CAS  Google Scholar 

  3. Obika S, Nanbu D, Hari Y, Morio K, In Y, Ishida T, Imanishi T (1997) Synthesis of 2′-Ο,4′-C-methyleneuridine and – cytidine. Novel bicyclic nucleosides having a fixed C3′-endo sugar puckering. Tetrahedron Lett 38:8735–8738

    Article  CAS  Google Scholar 

  4. Obika S, Nanbu D, Hari Y, Ando J, Morio K, Doi T, Imanishi T (1998) Stability and structural features of the duplexes containing nucleoside analogues with a fixed N-type conformation, 2′-O,4′-C-methyleneribonucleosides. Tetrahedron Lett 39:5401–5404

    Article  CAS  Google Scholar 

  5. Petersen M, Wengel J (2003) LNA: a versatile tool for therapeutics and genomics. Trends Biotech 21:74–81

    Article  CAS  Google Scholar 

  6. Koch T (2003) Locked nucleic acids: a family of high affinity nucleic acid probes. J Phys Condens Matter 15:S1861–S1871

    Article  CAS  Google Scholar 

  7. Vester B, Wengel J (2004) LNA (locked nucleic acid): high-affinity targeting of complementary RNA and DNA. Biochemistry 43:13233–13241

    Article  CAS  PubMed  Google Scholar 

  8. Jepsen JS, Sørensen MD, Wengel J (2004) Locked nucleic acid: a potent nucleic acid analog in therapeutics and biotechnology. Oligonucleotides 14:130–146

    Article  CAS  PubMed  Google Scholar 

  9. Kaur H, Babu R, Maiti S (2007) Perspectives on chemistry and therapeutic applications of locked nucleic acid (LNA). Chem Rev 107:4672–4697

    Article  CAS  PubMed  Google Scholar 

  10. Veedu RN, Wengel J (2009) Locked nucleic acid as a novel class of therapeutic agents. RNA Biol 6:321–323

    Article  CAS  PubMed  Google Scholar 

  11. Campbell MA, Wengel J (2011) Locked vs. unlocked nucleic acids (LNA vs. UNA): contrasting structures work towards common therapeutic goals. Chem Soc Rev 40:5680–5689

    Article  CAS  PubMed  Google Scholar 

  12. Zhou C, Chattopadhyaya J (2009) The synthesis of therapeutic locked nucleos(t)ides. Curr Opin Drug Discov Dev 12:876–898

    CAS  Google Scholar 

  13. Rahman SMA, Imanishi T, Obika S (2009) Synthesis of several types of bridged nucleic acids. Chem Lett 38:512–517

    Article  CAS  Google Scholar 

  14. Obika S, Rahman SMA, Fujisaka A, Kawada Y, Baba T, Imanishi T (2010) Bridged nucleic acids: development, synthesis and properties. Heterocycles 81:1347–1392

    Article  CAS  Google Scholar 

  15. Yamamoto T, Nakatani M, Narukawa K, Obika S (2011) Antisense drug discovery and development. Fut Med Chem 3:339–365

    Article  CAS  Google Scholar 

  16. Zhou C, Chattopadhyaya J (2012) Intramolecular free-radical cyclization reactions on pentose sugars for the synthesis of carba-LNA and carba-ENA and the application of their modified oligonucleotides as potential RNA targeted therapeutics. Chem Rev 112:3808–3832

    Article  CAS  PubMed  Google Scholar 

  17. Astakhova IK, Wengel J (2014) Scaffolding along nucleic acid duplexes using 2′-amino-locked nucleic acids. Acc Chem Res 47:1768–1777

    Article  CAS  PubMed  Google Scholar 

  18. Morita K, Hasegawa C, Kaneko M, Tsutsumi S, Sone J, Ishikawa T, Imanishi T, Koizumi M (2002) 2′-O,4′-C-Ethylene-bridged nucleic acids (ENA): high-nuclease-resistant and thermodynamically stable oligonucleotides for antisense drug. Bioorg Med Chem Lett 12:73–76

    Article  CAS  PubMed  Google Scholar 

  19. Morita K, Takagi M, Hasegawa C, Kaneko M, Tsutsumi S, Sone J, Ishikawa T, Imanishi T, Koizumi M (2003) Synthesis and properties of 2′-O,4′-C-ethylene-bridged nucleic acids (ENA) as effective antisense oligonucleotides. Bioorg Med Chem 11:2211–2226

    Article  CAS  PubMed  Google Scholar 

  20. Wang G, Gunic E, Girardet J-L, Stoisavljevic V (1999) Conformationally locked nucleosides. Synthesis and hybridization properties of oligodeoxynucleotides containing 2′,4′-C-bridged 2′-deoxynucleosides. Bioorg Med Chem Lett 9:1147–1150

    Article  CAS  PubMed  Google Scholar 

  21. Wang G, Girardet J-L, Gunic E (1999) Conformationally locked nucleosides. Synthesis and stereochemical assignments of 2′-C,4′-C-bridged bicyclonucleosides. Tetrahedron 55:7707–7724

    Article  CAS  Google Scholar 

  22. Singh SK, Kumar R, Wengel J (1998) Synthesis of novel bicycle[2.2.1] ribonucleosides: 2′-amino- and 2′-thio-LNA monomeric nucleosides. J Org Chem 63:6078–6079

    Article  CAS  PubMed  Google Scholar 

  23. Singh SK, Kumar R, Wengel J (1998) Synthesis of 2′-amino-LNA: a novel conformationally restricted high-affinity oligonucleotide analogue with a handle. J Org Chem 63:10035–10039

    Article  CAS  Google Scholar 

  24. Kumar R, Singh SK, Koshkin AA, Rajwanshi VK, Meldgaard M, Wengel J (1998) The first analogues of LNA (locked nucleic acids): phosphorothioate-LNA and 2′-thio-LNA. Bioorg Med Chem Lett 8:2219–2222

    Article  CAS  PubMed  Google Scholar 

  25. Morihiro K, Kodama T, Kentefu, Moai Y, Veedu RN, Obika S (2013) Selenomethylene locked nucleic acid enables reversible hybridization in response to redox changes. Angew Chem Int Ed 52:5074–5078

    Article  CAS  Google Scholar 

  26. Xu J, Liu Y, Dupouy C, Chattopadhyaya J (2009) Synthesis of conformationally locked carba-LNAs through intramolecular free-radical addition to C=N. Electrostatic and steric implication of the carba-LNA substituents in the modified oligos for nuclease and thermodynamic stabilities. J Org Chem 74:6534–6554

    Article  CAS  PubMed  Google Scholar 

  27. Sørensen MD, Petersen M, Wengel J (2003) Functionalized LNA (locked nucleic acid): high-affinity hybridization of oligonucleotides containing N-acylated and N-alkylated 2′-amino-LNA monomers. Chem Commun: 2130–2131

    Google Scholar 

  28. Varghese OP, Barman J, Pathmasiri W, Plashkevych O, Honcharenko D, Chattopadhyaya J (2006) Conformationally constrained 2′-N,4′-C-ethylene-bridged thymidine (aza-ENA-T): Synthesis, structure, physical, and biochemical studies of aza-ENA-T-modified oligonucleotides. J Am Chem Soc 128:15173–15187

    Article  CAS  PubMed  Google Scholar 

  29. Albæk N, Petersen M, Nielsen P (2006) Analogues of a locked nucleic acid with three-carbon 2′,4′-linkages: synthesis by ring-closing metathesis and influence on nucleic acid duplex stability and structure. J Org Chem 71:7731–7740

    Article  CAS  PubMed  Google Scholar 

  30. Srivastava P, Barman J, Pathmasiri W, Plashkevych O, Wenska M, Chattopadhyaya J (2007) Five- and six-membered conformationally locked 2′,4′-carbocyclic ribo-thymidines: synthesis, structure, and biochemical studies. J Am Chem Soc 129:8362–8379

    Article  CAS  PubMed  Google Scholar 

  31. Zhou C, Liu Y, Andaloussi M, Badgujar N, Plashkevych O, Chattopadhyaya J (2009) Fine tuning of electrostatics around the internucleotidic phosphate through incorporation of modified 2′,4′-carbocyclic-LNAs and – ENAs leads to significant modulation of antisense properties. J Org Chem 74:118–134

    Article  CAS  PubMed  Google Scholar 

  32. Zhou C, Plashkevych O, Chattopadhyaya J (2009) Double sugar and phosphate backbone-constrained nucleotides: synthesis, structure, stability, and their incorporation into oligodeoxynucleotides. J Org Chem 74:3248–3265

    Article  CAS  PubMed  Google Scholar 

  33. Kumar S, Hansen MH, Albæk N, Steffansen SI, Petersen M, Nielsen P (2009) Synthesis of functionalized carbocyclic locked nucleic acid analogues by ring-closing diene and enyne metathesis and their influence on nucleic acid stability and structure. J Org Chem 74:6756–6769

    Article  CAS  PubMed  Google Scholar 

  34. Seth PP, Vasquez G, Allerson CA, Berdeja A, Gaus H, Kinberger GA, Prakash TP, Migawa MT, Bhat B, Swayze EE (2010) Synthesis and biophysical evaluation of 2′,4′-constrained 2′O-methoxyethyl and 2′,4′-constrained 2′O-ethyl nucleic acid analogues. J Org Chem 75:1569–1581

    Article  CAS  PubMed  Google Scholar 

  35. Liu Y, Xu J, Karimiahmadabadi M, Zhou C, Chattopadhyaya J (2010) Synthesis of 2′,4′-propylene-bridged (carba-ENA) thymidine and its analogues: the engineering of electrostatic and steric effects at the bottom of the minor groove for nucleobase and thermodynamic stabilities and elicitation of RNase H. J Org Chem 75:7112–7128

    Article  CAS  PubMed  Google Scholar 

  36. Johannsen MW, Crispino L, Wamberg MC, Kalra N, Wengel J (2011) Amino acids attached to 2′-amino-LNA: synthesis and excellent duplex stability. Org Biomol Chem 9:243–252

    Article  CAS  PubMed  Google Scholar 

  37. Seth PP, Allerson CA, Berdeja A, Siwkowski A, Pallan PS, Gaus H, Prakash TP, Watt AT, Egli M, Swayze EE (2010) An exocyclic methylene group acts as a bioisostere of the 2′-oxygen atom in LNA. J Am Chem Soc 132:14942–14950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Upadhayaya RS, Deshpande SG, Li Q, Kardile RA, Sayyed AY, Kshirsagar EK, Salunke RV, Dixit SS, Zhou C, Földesi A, Chattopadhyaya J (2011) Carba-LNA-5MeC/A/G/T modified oligos show nucleobase-specific modulation of 3′-exonuclease activity, thermodynamic stability, RNA selectivity, and RNase H elicitation: synthesis and biochemistry. J Org Chem 76:4408–4431

    Article  CAS  PubMed  Google Scholar 

  39. Yamaguchi T, Horiba M, Obika S (2015) Synthesis and properties of 2′-O,4′-C-spirocyclopropylene bridged nucleic acid (scpBNA), an analogue of 2′,4′-BNA/LNA bearing a cyclopropane ring. Chem Commun 51:9737–9740

    Article  CAS  Google Scholar 

  40. Yahara A, Shrestha AR, Yamamoto T, Hari Y, Osawa T, Yamaguchi M, Nishida M, Kodama T, Obika S (2012) Amido-bridged nucleic acids (AmNAs): synthesis, duplex stability, nuclease resistance, and in vitro antisense potency. ChemBioChem 13:2513–2516

    Article  CAS  PubMed  Google Scholar 

  41. Yamamoto T, Yahara A, Waki R, Yasuhara H, Wada F, Harada-Shiba M, Obika S (2015) Amido-bridged nucleic acids with small hydrophobic residues enhance hepatic tropism of antisense oligonucleotides in vivo. Org Biomol Chem 13:3757–3765

    Article  CAS  PubMed  Google Scholar 

  42. Martin P (1995) Ein neuer zugang zu 2′-O-alkylribonucleosiden und eigenschaften deren oligonucleotide. Helv Chim Acta 78:486–504

    Article  CAS  Google Scholar 

  43. Baker BF, Lot SS, Condon TP, Cheng-Flournoy S, Lesnik EA, Sasmor HM, Bennett (1997) 2′-O-(2-methoxy)ethyl-modified anti-intercellular adhesion molecule 1(ICAM-1) oligonucleotides selectively increase the ICAM-1 mRNA level and inhibit formation of the ICAM-1 translation initiation complex in human umbilical vein endothelial cells. J Biol Chem 272:11994–12000

    Article  CAS  PubMed  Google Scholar 

  44. Seth PP, Siwkowski A, Allerson CA, Vasquez G, Lee S, Prakash TP, Wancewicz EV, Witchell D, Swayze EE (2009) Short antisense oligonucleotides with novel 2′-4′ conformationally restricted nucleoside analogues show improved potency without increased toxicity in animals. J Med Chem 52:10–13

    Article  CAS  PubMed  Google Scholar 

  45. Prakash TP, Siwkowski A, Allerson CR, Migawa MT, Lee S, Gaus HJ, Black C, Seth PP, Swayze EE, Bhat B (2010) Antisense oligonucleotides containing conformationally constrained 2′,4′-(N-methoxy)aminomethylene and 2′,4′-aminooxymethylene and 2′-Ο,4′-C-aminomethylene bridged nucleoside analogues show improved potency in animal models. J Med Chem 53:1636–1650

    Article  CAS  PubMed  Google Scholar 

  46. Mori K, Kodama T, Baba T, Obika S (2011) Bridged nucleic acid conjugates at 6′-thiol: synthesis, hybridization properties and nuclease resistances. Org Biomol Chem 9:5272–5279

    Article  CAS  PubMed  Google Scholar 

  47. Baba T, Kodama T, Mori K, Imanishi T, Obika S (2010) A novel bridged nucleoside bearing a conformationally switchable sugar moiety in response to redox changes. Chem Commun 46:8058–8060

    Article  CAS  Google Scholar 

  48. Barrón LB, Waterman KC, Filipiak P, Hug GL, Nauser T, Schöneich C (2004) Mechanism and kinetics of photoisomerization of a cyclic disulfide, trans-4,5-dihydroxy-1,2-dithiacyclohexane. J Phys Chem A 108:2247–2255

    Article  CAS  Google Scholar 

  49. Barrón LB, Waterman KC, Offerdahl TJ, Munson E, Schöneich C (2005) Reactions of aliphatic thiyl radicals in the solid state: photoisomerization of trans-4,5-dihydroxy-1,2-dithiacyclohexane and oxidation of dithiothreitol. J Phys Chem A 109:9241–9248

    Article  CAS  PubMed  Google Scholar 

  50. Shrestha AR, Kotobuki Y, Hari Y, Obika S (2014) Guanidine bridged nucleic acid (GuNA): an effect of a cationic bridged nucleic acid on DNA binding affinity. Chem Commun 50:575–577

    Article  CAS  Google Scholar 

  51. Rahman SMA, Seki S, Obika S, Yoshikawa H, Miyashita K, Imanishi T (2008) Design, synthesis, and properties of 2′,4′-BNANC: a bridged nucleic acid analogue. J Am Chem Soc 130:4886–4896

    Article  CAS  PubMed  Google Scholar 

  52. Miyashita K, Rahman SMA, Seki S, Obika S, Imanishi T (2007) N-methyl substituted 2′,4′-BNANC: a highly nuclease-resistant nucleic acid analogue with high-affinity RNA selective hybridization. Chem Commun: 3765–3767

    Google Scholar 

  53. Rahman SMA, Seki S, Obika S, Haitani S, Miyashita K, Imanishi T (2007) Highly stable pyrimidine-motif triplex formation at physiological pH values by a bridged nucleic acid analogue. Angew Chem Int Ed 46:4306–4309

    Article  CAS  Google Scholar 

  54. Yamamoto T, Yasuhara H, Wada F, Harada-Shiba M, Imanishi T, Obika S (2012) Superior silencing by 2′,4′-BNANC-based short antisense oligonucleotides compared to 2′,4′-BNA/LNA-based apolipoprotein B antisense inhibitors. J Nucleic Acids 2012:707323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yamamoto T, Harada-Shiba M, Nakatani M, Wada S, Yasuhara H, Narukawa K, Sasaki K, Shibata M, Torigoe H, Yamaoka T, Imanishi T, Obika S (2012) Cholesterol-lowering action of BNA-based antisense oligonucleotides targeting PCSK9 in atherogenic diet-induced hypercholesterolemic mice. Mol Ther Nucleic Acids 1:e22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kondo J, Nomura Y, Kitahara Y, Obika S, Torigoe H (2016) The crystal structure of 2′,4′-BNANC[N-Me]-modified antisense gapmer in complex with the target RNA. Chem Commun 52:2354–2357

    Article  CAS  Google Scholar 

  57. Torigoe H, Rahman SM, Takuma H, Sato N, Imanishi T, Obika S, Sasaki K (2011) Interrupted 2′-O,4′-C-aminomethylene bridged nucleic acid modification enhances pyrimidine motif triplex-forming ability and nuclease resistance under physiological condition. Nucleosides Nucleotides Nucleic Acids 30:63–81

    Article  CAS  PubMed  Google Scholar 

  58. Shrestha AR, Hari Y, Yahara A, Osawa T, Obika S (2011) Synthesis and properties of a bridged nucleic acid with a perhydro-1,2-oxazin-3-one ring. J Org Chem 76:9891–9899

    Article  CAS  PubMed  Google Scholar 

  59. Hari Y, Osawa T, Kotobuki Y, Yahara A, Shrestha AR, Obika S (2013) Synthesis and properties of thymidines with six-membered amide bridge. Bioorg Med Chem 21:4405–4412

    Article  CAS  PubMed  Google Scholar 

  60. Mitsuoka Y, Fujimura Y, Waki R, Kugimiya A, Yamamoto T, Hari Y, Obika S (2014) Sulfonamide-bridged nucleic acid: synthesis, high RNA selective hybridization, and high nuclease resistance. Org Lett 16:5640–5643

    Article  CAS  PubMed  Google Scholar 

  61. Mitsuoka Y, Aoyama H, Kugimiya A, Fujimura Y, Yamamoto T, Waki R, Wada F, Tahara S, Sawamura M, Noda M, Hari Y, Obika S (2016) Effect of an N-substituent in sulfonamide-bridged nucleic acid (SuNA) on hybridization ability and duplex structure. Org Biomol Chem. https://doi.org/10.1039/c6ob01051b

  62. Gryaznov SM, Letsinger RL (1992) Selective O-phophitilation with nucleoside phosphoramidite reagents. Nucleic Acids Res 20:1879–1882

    Google Scholar 

  63. Barman J, Gurav D, Oommen OP, Varghese OP (2015) 2′-N-Guanidino,4′-C-ethylene bridged thymidine (GENA-T) modified oligonucleotide exhibits triplex formation with excellent enzymatic stability. RSC Adv 5:12257–12260

    Google Scholar 

  64. Hari Y, Obika S, Ohnishi R, Eguchi K, Osaki T, Ohishi H, Imanishi T (2006) Synthesis and properties of 2′-O,4′-C-methyleneoxymethylene bridged nucleic acid. Bioorg Med Chem 14:1029–1038

    Article  CAS  PubMed  Google Scholar 

  65. Mitsuoka Y, Kodama T, Ohnishi R, Hari Y, Imanishi T, Obika S (2009) A bridged nucleic acid, 2′,4′-BNACOC: synthesis of fully modified oligonucleotides bearing thymine, 5-methylcytosine, adenine and guanine 2′,4′-BNACOC monomers and RNA-selective nucleic-acid recognition. Nucleic Acids Res 37:1225–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Morihiro K, Kodama T, Nishida M, Imanishi T, Obika S (2009) Synthesis of light-responsive bridged nucleic acid and changes in affinity with complementary ssRNA. ChemBioChem 10:1784–1788

    Article  CAS  PubMed  Google Scholar 

  67. Morihiro K, Kodama T, Obika S (2011) Benzylidene acetal type bridged nucleic acids: changes in properties upon cleavage of the bridge triggered by external stimuli. Chem Eur J 17:7918–7926

    Article  CAS  PubMed  Google Scholar 

  68. Kasahara Y, Kitadume S, Morihiro K, Kuwahara M, Ozaki H, Sawai H, Imanishi T, Obika S (2010) Effect of 3′-end capping of aptamer with various 2′,4′-bridged nucleotides: enzymatic post-modification toward a practical use of polyclonal aptamers. Bioorg Med Chem Lett 20:1626–1629

    Article  CAS  PubMed  Google Scholar 

  69. Nishida M, Baba T, Kodama T, Yahara A, Imanishi T, Obika S (2010) Synthesis, RNA selective hybridization and high nuclease resistance of an oligonucleotide containing novel bridged nucleic acid with cyclic urea structure. Chem Commun 46:5283–5285

    Article  CAS  Google Scholar 

  70. Hari Y, Morikawa T, Osawa T, Obika S (2013) Synthesis and properties of 2′-O, 4′-C-ethyleneoxy bridged 5-methyluridine. Org Lett 15:3702–3705

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiyuki Hari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hari, Y., Obika, S. (2018). 2′,4′-Bridged Nucleic Acids Containing Plural Heteroatoms in the Bridge Moiety. In: Obika, S., Sekine, M. (eds) Synthesis of Therapeutic Oligonucleotides. Springer, Singapore. https://doi.org/10.1007/978-981-13-1912-9_12

Download citation

Publish with us

Policies and ethics