Skip to main content

Non-Newtonian Fluid Flow Past a Porous Sphere Using Darcy’s Law

  • Conference paper
  • First Online:
Book cover Numerical Heat Transfer and Fluid Flow

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

  • 1970 Accesses

Abstract

The present work describes the low Reynolds number flow of an incompressible micropolar fluid past and through a porous sphere placed in a uniform flow. Stokes equation is used for the flow outside the porous sphere and Darcy’s law is used in the porous region. The boundary conditions used are the continuity of the normal velocity components, continuity of pressures, Beavers–Joseph slip boundary condition for tangential velocities and zero microrotation at the surface of the porous sphere. The drag force exerted on the porous sphere is determined and its variation versus permeability parameter is studied numerically. The limiting cases of micropolar fluid flow past a solid sphere in an unbounded medium and viscous fluid flow past a porous sphere are obtained from the present analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eringen, A.C.: Theory of micropolar fluids. J. Math. Mech. 16, 1–18 (1966)

    MathSciNet  Google Scholar 

  2. Eringen, A.C.: Microcontinuum Field Theories II: Fluent Media. Springer, New York (2001)

    MATH  Google Scholar 

  3. Ariman, T., Turk, M.A., Sylvester, N.D.: Applications of microcontinuum fluid mechanics. Int. J. Eng. Sci. 12, 273–293 (1974). https://doi.org/10.1016/0020-7225(74)90059-7

    Article  MATH  Google Scholar 

  4. Leonov, A.I.: The slow stationary flow of a viscous fluid about a porous sphere. J. App. Maths. Mech. 26(3), 842–847 (1962). https://doi.org/10.1016/0021-8928(62)90050-3

    Article  MathSciNet  MATH  Google Scholar 

  5. Joseph, D.D., Tao, L.N.: The effect of permeability in the slow motion of a porous sphere in a viscous liquid. Z. Angew. Math. Mech. 44, 361–364 (1964). https://doi.org/10.1002/zamm.19640440804

    Article  MATH  Google Scholar 

  6. Sutherland, D.N., Tan, C.T.: Sedimentation of a porous sphere. Chem. Eng. Sci. 25, 1948–1950 (1970). https://doi.org/10.1016/0009-2509(70)87013-0

    Article  Google Scholar 

  7. Singh, M.P., Gupta, J.L.: The effect of permeability on the drag of a porous sphere in a uniform stream. Z. Angew. Math. Mech. 51, 27–32 (1971). https://doi.org/10.1002/zamm.19710510103

    Article  MATH  Google Scholar 

  8. Beavers, G.S., Joseph, D.D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30(1), 197–207 (1967). https://doi.org/10.1017/S0022112067001375

    Article  Google Scholar 

  9. Jones, I.P.: Low Reynolds number flow past a porous spherical shell. Proc. Camb. Phil. Soc. 73, 231–238 (1973). https://doi.org/10.1017/S0305004100047642

    Article  MATH  Google Scholar 

  10. Saffman, P.G.: On the boundary condition at the surface of a porous medium. Stud. Appl. Math. 50, 93–101 (1971). https://doi.org/10.1002/sapm197150293

    Article  MATH  Google Scholar 

  11. Davis, R.H., Stone, H.A.: Flow through beds of porous particles. Chem. Eng. Sci. 48(23), 3993–4005 (1993). https://doi.org/10.1016/0009-2509(93)80378-4

    Article  Google Scholar 

  12. Padmavathi, B.S., Amarnath, T., Palaniappan, D.: Stokes flow about a porous spherical particle. Arch. Mech. 46, 191–199 (1994)

    MATH  Google Scholar 

  13. Vainshtein, P., Shapiro, M., Gutfinger, C.: Creeping flow past and within a permeable spheroid. Int. J. Multiphase flow. 28, 1945–1963 (2002). https://doi.org/10.1016/S0301-9322(02)00106-4

    Article  Google Scholar 

  14. Srinivasacharya, D.: Flow past a porous approximate spherical shell. Z. Angew. Math. Phys. 58, 646-658 (2007). https://doi.org/10.1007/s00033-006-6003-9

    Article  MathSciNet  Google Scholar 

  15. Rao, S.K.L., Rao, P.B.: The slow stationary flow of a micropolar liquid past a sphere. J. Eng. Math. 4, 209–217 (1970). https://doi.org/10.1007/BF01534881

    Article  MATH  Google Scholar 

  16. Ramkissoon, H., Majumdar, S.R.: Drag on an axially symmetric body in the Stokes’ flow of micropolar fluid. Phys. Fluids 19, 16–21 (1976). https://doi.org/10.1063/1.861320

    Article  MathSciNet  MATH  Google Scholar 

  17. Hoffmann, K.H., Marx, D., Botkin, N.D.: Drag on spheres in micropolar fluids with non-zero boundary conditions for microrotations. J. Fluid Mech. 590, 319–330 (2007). https://doi.org/10.1017/S0022112007008099

    Article  MATH  Google Scholar 

  18. Rao, S.K.L., Iyengar, T.K.V.: The slow stationary flow of incompressible micropolar fluid past a spheroid. Int. J. Eng. Sci. 19, 189–220 (1981). https://doi.org/10.1016/0020-7225(81)90021-5

    Article  Google Scholar 

  19. Iyengar, T.K.V., Srinivasacharya, D.: Stokes flow of an incompressible micropolar fluid past an approximate sphere. Int. J. Eng. Sci. 31, 115–123 (1993). https://doi.org/10.1016/0020-7225(93)90069-7

    Article  MATH  Google Scholar 

  20. Iyengar, T.K.V., Radhika, T.: Stokes flow of an incompressible micropolar fluid past a porous spheroidal shell. Bulletin of the Polish Academy of Sciences: Technical Sciences 59(1), 63–74 (2011). https://doi.org/10.2478/v10175-011-0010-5

    Article  MATH  Google Scholar 

  21. Lukaszewicz, G.: Micropolar Fluids: Theory and Applications. Birkh\(\ddot{a}\)user, Basel (1999)

    Chapter  Google Scholar 

  22. Happel, J., Brenner, H.: Low Reynolds Number Hydrodynamics. Prentice-Hall, Englewood Cliffs, NJ (1965)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Chhattisgarh Council of Science and Technology, Raipur (C.G), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Krishna Prasad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krishna Prasad, M. (2019). Non-Newtonian Fluid Flow Past a Porous Sphere Using Darcy’s Law. In: Srinivasacharya, D., Reddy, K. (eds) Numerical Heat Transfer and Fluid Flow. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-1903-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1903-7_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1902-0

  • Online ISBN: 978-981-13-1903-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics