Skip to main content

Organophosphate Pesticides: Impact on Environment, Toxicity, and Their Degradation

  • Chapter
  • First Online:
Bioremediation of Industrial Waste for Environmental Safety

Abstract

Organophosphate pesticides are extensively used for the control of weeds, diseases, and pests of crops. Hence, these insecticides persist in the environs and thereby cause severe pollution problems. Synthetic pesticides including organophosphates insecticides are found to be toxic and/or hazardous to a variety of organisms like living soil biota along with valuable arthropods, fish, birds, human beings, animals, and plants. Organophosphate pesticides might be decontaminated quickly through hydrolysis on exposure to biosphere, which are responsible to be significantly influenced by abiotic and/or biotic factors. The bacterial cultures isolated from various places are the major entities in the environment with a unique capability to break down different organophosphate pesticides for their growth. Additionally, a potential engineered strain(s) application for the bioremediation of organophosphate(s) is of great interest. In the current chapter, the published information on organophosphates impact on environment, toxic effects, and the available results of their degradation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah RR, Ghani SBA, Sukar NA (2016) Degradation of profenofos and λ-cyhalothrin using endogenous bacterial isolates and detection of the responsible genes. J Bioremed Biodegr 7:360

    Article  CAS  Google Scholar 

  • Abhijith BD, Ramesh M, Poopal RK (2016) Responses of metabolic and antioxidant enzymatic activities in gill, liver and plasma of Catla catla during methyl parathion exposure. J Basic Appl Zool 77:31–40

    Article  CAS  Google Scholar 

  • Abhilash PC, Singh N (2009) Pesticide use and application: an Indian scenario. J Hazard Mater 165:1–12

    Article  CAS  Google Scholar 

  • Abraham J, Silambarasan S (2016) Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol using a novel bacterium Ochrobactrum sp. JAS2: a proposal of its metabolic pathway. Pestic Biochem Physiol 126:13–21

    Article  CAS  Google Scholar 

  • Akbar S, Sultan S (2016) Soil bacteria showing a potential of chlorpyrifos degradation and plant growth enhancement. Braz J Microbiol 47(3):563–570

    Article  CAS  Google Scholar 

  • Akbar S, Sultan S, Kertesz M (2014) Bacterial community analysis in chlorpyrifos enrichment cultures via DGGE and use of bacterial consortium for CP biodegradation. World J Microbiol Biotechnol 30:2755–2766

    Article  CAS  Google Scholar 

  • Alavanja MC, Samanic C, Dosemeci M, Lubin J, Tarone R, Lynch CF, Knott C, Thomas K, Hoppin JA, Barker J, Coble J, Sandler DP, Blair A (2003) Use of agricultural pesticides and prostate cancer risk in the agricultural health study cohort. Am J Epidemiol 157:800–814

    Article  Google Scholar 

  • Anwar S, Liaquat F, Khan QM, Khalid ZM, Iqbal S (2009) Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol by Bacillus pumilus strain C2A1. J Hazard Mater 168(1):400–405

    Article  CAS  Google Scholar 

  • Barcelo D (1991) Occurrence, handling and chromatographic determination of pesticides in the aquatic environment. A review. Analyst 116(7):681–689

    Article  CAS  Google Scholar 

  • Bharagava RN, Chowdhary P, Saxena G (2017a) Bioremediation: an ecosustainable green technology: its applications and limitations. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press/Taylor & Francis Group, Boca Raton, pp 1–22. https://doi.org/10.1201/9781315173351-2

    Chapter  Google Scholar 

  • Bharagava RN, Saxena G, Chowdhary P (2017b) Constructed wetlands: an emerging phytotechnology for degradation and detoxification of industrial wastewaters. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press/Taylor & Francis Group, Boca Raton, pp 397–426. https://doi.org/10.1201/9781315173351-15

    Chapter  Google Scholar 

  • Blakley BR, Yole MJ, Brousseau P, Boermans H, Fournier M (1999) Effect of chlorpyrifos on immune function in rats. Vet Hum Toxicol 41(3):140–144

    CAS  Google Scholar 

  • Bould HL (1995) DDT residues in the environment-a review with a New Zealand perspective. N Z J Agric Res 38:257–277

    Article  Google Scholar 

  • Chandra R, Saxena G, Kumar V (2015) Phytoremediation of environmental pollutants: an eco-sustainable green technology to environmental management. In: Chandra R (ed) Advances in biodegradation and bioremediation of industrial waste, 1st edn. CRC Press/Taylor & Francis Group, Boca Raton, pp 1–30. https://doi.org/10.1201/b18218-2

    Chapter  Google Scholar 

  • Charoensri K, Esuchart U, Nouwarath S, Pairote P (2001) Degradation of methyl parathion in an aqueous medium by soil bacteria. Sci Asia 27:261–271

    Article  Google Scholar 

  • Chaudhry GR, Ali AN, Wheeler WB (1988) Isolation of a methyl parathion-degrading Pseudomonas sp. that possesses DNA homologous to the opd gene from a Flavobacterium sp. Appl Environ Microbiol 54:288–293

    CAS  Google Scholar 

  • Cho KM, Math RK, Islam SM, Lim WJ, Hong SY, Kim JM, Yun MG, Cho JJ, Yun HD (2009) Biodegradation of chlorpyrifos by lactic acid bacteria during kimchi fermentation. J Agric Food Chem 57(5):1882–1889

    Article  CAS  Google Scholar 

  • Cycon M, Zmijowska A, Wojcik M, Piotrowska-Seget Z (2013) Biodegradation and bioremediation potential of diazinon-degrading Serratia marcescens to remove other organophosphorus pesticides from soils. J Environ Manag 117:7–16

    Article  CAS  Google Scholar 

  • Dadson OA, Ellison CA, Singleton ST, Chi L-H, McGarrigle BP, Lein PJ, Farahat FM, Farahat T, Olson JR (2013) Metabolism of profenofos to 4-bromo-2-chlorophenol, a specific and sensitive exposure biomarker. Toxicology 306:35–39

    Article  CAS  Google Scholar 

  • Debnath D, Mandal TK (2000) Study of quinalphos (an environmental oestrogenic insecticide) formulation (Ekalux 25 E.C.)-induced damage of the testicular tissues and antioxidant defence systems in Sprague-Dawley albino rats. J Appl Toxicol 20(3):197–204

    Article  CAS  Google Scholar 

  • Deng S, Chen Y, Wang D, Shi T, Wu X, Ma X, Li X, Hua R, Tang X, Li QX (2015) Rapid biodegradation of organophosphorus pesticides by Stenotrophomonas sp. G1. J Hazard Mater 297:17–24

    Article  CAS  Google Scholar 

  • Dhanjal NIK, Kaur P, Sud D, Cameotra SS (2014) Persistence and biodegradation of quinalphos using soil microbes. Water Environ Res 86:457–461

    Article  CAS  Google Scholar 

  • Diagne M, Oturan N, Oturan MA (2007) Removal of methyl parathion from water by electrochemically generated Fenton’s reagent. Chemosphere 66(5):841–848

    Article  CAS  Google Scholar 

  • Dubey KK, Fulekar MH (2012) Chlorpyrifos bioremediation in Pennisetum rhizosphere by a novel potential degrader Stenotrophomonas maltophilia MHF ENV20. World J Microbiol Biotechnol 28(4):1715–1725

    Article  CAS  Google Scholar 

  • Duquesne S, Kuester E (2010) Biochemical, metabolic, and behavioural responses and recovery of Daphnia magna after exposure to an organophosphate. Ecotoxicol Environ Saf 73:353–359

    Article  CAS  Google Scholar 

  • Dwivedi PD, Das M, Khanna SK (1998) Role of cytochrome P-450 in quinalphos toxicity: effect on hepatic and brain antioxidant enzymes in rats. Food Chem Toxicol 36(5):437–444

    Article  CAS  Google Scholar 

  • Elersek T, Filipic M (2011) Organophosphorous pesticides – mechanisms of their toxicity. In: Stoytcheva M (ed) Pesticides – the impacts of pesticides exposure. InTech

    Google Scholar 

  • Engel LS, Hill DA, Hoppin JA, Lubin JH, Lynch CF, Pierce J, Samanic C, Sandler DP, Blair A, Alavanja MC (2005) Pesticide use and breast cancer risk among farmers’ wives in the agricultural health study. Am J Epidemiol 161:121–135

    Article  Google Scholar 

  • EPA (2012) Environmental protection agency reregistration eligibility decision for profenofos. http://www.epa.gov/oppsrrd1/REDs/profenofos_red.pdf

  • Fawzy I, Iman Z, Hamza A (2007) The effect of an Organophosphorus insecticide on the hepatic, renal and pulmonary tissues of mice fetuses Egypt. J Med Lab Sci 16:99–113

    Google Scholar 

  • Feng F, Ge J, Li Y, Cheng J, Zhong J, Yu X (2017) Isolation, colonization, and Chlorpyrifos degradation mediation of the endophytic bacterium Sphingomonas strain HJY in Chinese chives (Allium tuberosum). J Agric Food Chem 65(6):1131–1138

    Article  CAS  Google Scholar 

  • Fosu-Mensah BY, Okoffo ED, Darko G, Gordon C (2016) Organophosphorus pesticide residues in soils and drinking water sources from cocoa producing areas in Ghana. Environ Syst Res 5:10

    Article  Google Scholar 

  • Gangireddygari VSR, Kalva PK, Ntushelo K, Bangeppagari M, Djami Tchatchou A, Bontha RR (2017) Influence of environmental factors on biodegradation of quinalphos by Bacillus thuringiensis. Environ Sci Eur 29(1):11

    Article  CAS  Google Scholar 

  • Ghanem I, Orfi M, Shamma M (2007) Biodegradation of chlorpyrifos by Klebsiella sp. isolated from an activated sludge sample of waste water treatment plant in Damascus. Folia Microbiol 52(4):423–427

    Article  CAS  Google Scholar 

  • Ghosh PG, Sawant NA, Patil SN, Aglave BA (2010) Microbial biodegradation of organophosphate pesticides. Int J Biotechnol Biochem 6:871–876

    Google Scholar 

  • Gilani RA, Rafique M, Rehman A, Munis MFH, ur Rehman S, Chaudhary HJ (2016) Biodegradation of chlorpyrifos by bacterial genus Pseudomonas. J Basic Microbiol 56:105–119

    Article  CAS  Google Scholar 

  • Goldberg ME, Johnson HE, Knaak JB, Smyth HFJ (1963) Psychopharmacological effects of reversible cholinesterase inhibition induced by N -methyl-3-isopropyl-phenyl carbamate (compound 10854). J Pharm exp Ther 141:244–252

    CAS  Google Scholar 

  • Gomes J, Dawodu AH, Lloyd O, Revitt DM, Anilal SV (1999) Hepatic injury and disturbed amino acid metabolism in mice following prolonged exposure to organophosphorus pesticides. Hum Exp Toxicol 18(1):33–37

    Article  CAS  Google Scholar 

  • Gong T, Liu R, Che Y, Xu X, Zhao F, Yu H, Song C, Liu Y, Yang C (2016a) Engineering Pseudomonas putida KT2440 for simultaneous degradation of carbofuran and chlorpyrifos. Microb Biotechnol 9(6):792–800

    Article  CAS  Google Scholar 

  • Gong T, Liu R, Zuo Z, Che Y, Yu H, Song C, Yang C (2016b) Metabolic engineering of Pseudomonas putida KT2440 for complete mineralization of methyl parathion and gamma-hexachlorocyclohexane. ACS Synth Biol 5(5):434–442

    Article  CAS  Google Scholar 

  • Gotoh M, Sakata M, Endo T, Hayashi H, Seno H, Suzuki O (2001) Profenofos metabolites in human poisoning. Forensic Sci Int 116(2–3):221–226

    Article  CAS  Google Scholar 

  • Guha A, Kumari B, Bora TC, Roy MK (1997) Possible involvement of plasmids in degradation of malathion and chlorpyrifos by Micrococcus sp. Folia Microbiol 42:574–576

    Article  CAS  Google Scholar 

  • Harnpicharnchai K, Chaiear N, Charerntanyarak L (2013) Residues of organophosphate pesticides used in vegetable cultivation in ambient air, surface water and soil in Bueng Niam subdistrict, Khon Kaen, Thailand. Southeast Asian J Trop Med Pub Health 44:1088–1097

    CAS  Google Scholar 

  • He J, Fan M, Liu X (2010) Environmental behavior of profenofos under paddy field conditions. Bull Environ Contam Toxicol 84(6):771–774

    Article  CAS  Google Scholar 

  • Huang QY, Huang L, Huang HQ (2011) Proteomic analysis of methyl parathion-responsive proteins in zebrafish (Danio rerio) brain. Comp Biochem Physiol C Toxicol Pharmacol 153(1):67–74

    Article  CAS  Google Scholar 

  • Ishag AESA, Abdelbagi AO, Hammad AMA, Elsheikh EAE, Elsaid OE, Hur J-H, Laing MD (2016) Biodegradation of chlorpyrifos, malathion and dimethoate by three strains of bacteria isolated from pesticide-polluted soils in Sudan. J Agric Food Chem 64:8491–8498

    Article  CAS  Google Scholar 

  • Jegede OO, Owojori OJ, Rombke J (2017) Temperature influences the toxicity of deltamethrin, chlorpyrifos and dimethoate to the predatory mite Hypoaspis aculeifer (Acari) and the springtail Folsomia candida (Collembola). Ecotoxicol Environ Saf 140:214–221. https://doi.org/10.1016/j.ecoenv.2017.02.046

    Article  CAS  Google Scholar 

  • John EM, Sreekumar J, Jisha MS (2016) Optimization of Chlorpyrifos degradation by assembled bacterial consortium using response surface methodology. Soil Sedimentol Contam 25:668–682

    Article  CAS  Google Scholar 

  • Karunanayake CP, Spinelli JJ, McLaughlin JR, Dosman JA, Pahwa P, McDuffie HH (2012) Hodgkin lymphoma and pesticides exposure in men: a Canadian case-control study. J Agromedicine 17(1):30–39

    Article  Google Scholar 

  • Katti G, Verma S (1992) Persistence of quinalphos against pests under Indian conditions. Pestic Inf 18:37–40

    Google Scholar 

  • Kaushik P, Kaushik G (2007) An assessment of structure and toxicity correlation in organochlorine pesticides. J Hazard Mater 143(1–2):102–111

    Article  CAS  Google Scholar 

  • Khalid S, Hashmi I, Khan SJ (2016) Bacterial assisted degradation of chlorpyrifos: the key role of environmental conditions, trace metals and organic solvents. J Environ Manag 168:1–9

    Article  CAS  Google Scholar 

  • Khera KS, Kaur J, Sangha GK (2016) Reproductive toxicity of quinalphos on female albino rats: effects on ovary and uterus. Indian J Anim Res 50:537–543

    Google Scholar 

  • Kulshrestha G, Kumari A (2011) Fungal degradation of chlorpyrifos by Acremonium sp. strain (GFRC-1) isolated from a laboratory-enriched red agricultural soil. Biol Fertil Soils 47:219–225

    Article  CAS  Google Scholar 

  • Kuo W, Regan R (1999) Removal of pesticides from rinsate by adsorption using agricultural residuals as medium. J Environ Sci Health B 34:431–447

    Article  Google Scholar 

  • Lakshmi CV, Kumar M, Khanna S (2008) Biotransformation of chlorpyrifos and bioremediation of contaminated soil. Int Biodeterior Biodegrad 62:204–209

    Article  CAS  Google Scholar 

  • Lee W, Blair A, Hoppin JA, Lubin JH, Rusiecki JA, Sandler DP, Dosemeci M, Alavanja MCR (2004) Cancer incidence among pesticide applicators exposed to chlorpyrifos in the agricultural health study. J Nat Cancer Inst 96:1781–1789

    Article  CAS  Google Scholar 

  • Lee WJ, Sandler DP, Blair A, Samanic C, Cross AJ, Alavanja MCR (2007) Pesticide use and colorectal cancer risk in the agricultural health study. Int J Cancer 121:339–346

    Article  CAS  Google Scholar 

  • Li X, He J, Li S (2007) Isolation of a chlorpyrifos-degrading bacterium, Sphingomonas sp. strain Dsp-2, and cloning of the mpd gene. Res Microbiol 158(2):143–149

    Article  CAS  Google Scholar 

  • Li X, Jiang J, Gu L, Ali SW, He J, Li S (2008) Diversity of chlorpyrifos-degrading bacteria isolated from chlorpyrifos-contaminated samples. Int Biodeterior Biodegrad 62:331–335

    Article  CAS  Google Scholar 

  • Li J, Liu J, Shen W, Zhao X, Hou Y, Cao H, Cui Z (2010) Isolation and characterization of 3,5,6-trichloro-2-pyridinol-degrading Ralstonia sp. strain T6. Bioresour Technol 101(19):7479–7483

    Article  CAS  Google Scholar 

  • Lin L, Liu J, Zhang K, Chen Y (2003) An experimental study of the effects of profenofos on antioxidase in rabbits. Wei Sheng Yan Jiu 32(5):434–435

    CAS  Google Scholar 

  • Liu FY, Hong MZ, Liu DM, Li YW, Shou PS, Yan H, Shi GQ (2007) Biodegradation of methyl parathion by Acinetobacter radioresistens USTB-04. J Environ Sci (China) 19(10):1257–1260

    Article  CAS  Google Scholar 

  • Liu Z, Chen X, Shi Y, Su Z (2012) Bacterial degradation of Chlorpyrifos by Bacillus cereus. Adv Mater Res 356–360:676–680

    Google Scholar 

  • Liu J, Tan L, Wang J, Wang Z, Ni H, Li L (2016a) Complete biodegradation of chlorpyrifos by engineered Pseudomonas putida cells expressing surface-immobilized laccases. Chemosphere 157:200–207. https://doi.org/10.1016/j.chemosphere.2016.05.031

    Article  CAS  Google Scholar 

  • Liu XY, Chen FF, Li CX, Luo XJ, Chen Q, Bai YP, Xu JH (2016b) Improved efficiency of a novel methyl parathion hydrolase using consensus approach. Enzym Microb Technol 93:11–17

    Article  CAS  Google Scholar 

  • Lu P, Li Q, Liu H, Feng Z, Yan X, Hong Q, Li S (2013) Biodegradation of chlorpyrifos and 3,5,6-trichloro-2-pyridinol by Cupriavidus sp. DT-1. Bioresour Technol 127:337–342

    Article  CAS  Google Scholar 

  • Mahboob S, Niazi F, Sultana S, Ahmad Z (2013) Assessment of pesticide residues in water, sediments and muscles of Cyprinus carpio from head Balloki in the River Ravi. Life Sci J 10:32–38

    Google Scholar 

  • Malghani S, Chatterjee N, Hu X, Zejiao L (2009a) Isolation and characterization of a profenofos degrading bacterium. J Environ Sci (China) 21:1591–1597

    Article  CAS  Google Scholar 

  • Malghani S, Chatterjee N, Yu HX, Luo Z (2009b) Isolation and identification of Profenofos degrading bacteria. Braz J Microbiol 40:893–900

    Article  CAS  Google Scholar 

  • Mallick BK, Banerji A, Shakli NA, Sethunathan NN (1999) Bacterial degradation of chlorpyrifos in pure culture and in soil. Bull Environ Contam Toxicol 62:48–55

    Article  CAS  Google Scholar 

  • Miersma NA, Pepper CB, Anderson TA (2003) Organochlorine pesticides in elementary school yards along the Texas-Mexico border. Environ Pollut 126(1):65–71

    Article  CAS  Google Scholar 

  • Mohapatra PK (2008) Textbook of environmental microbiology. I.K. International Publishing House Pvt. Ltd, New Delhi

    Google Scholar 

  • Mugni H, Paracampo A, Demetrio P, Pardi M, Bulus G, Ronco A, Bonetto C (2016) Toxicity persistence of Chlorpyrifos in runoff from experimental soybean plots to the non-target amphipod Hyalella curvispina: effect of crop management. Arch Environ Contam Toxicol 70(2):257–264

    Article  CAS  Google Scholar 

  • Mulla SI, Wang H, Sun Q, Hu A, Yu CP (2016) Characterization of triclosan metabolism in Sphingomonas sp. strain YL-JM2C. Sci Rep 6:21965

    Article  CAS  Google Scholar 

  • Munoz-de-Toro M, Beldomenico HR, Garcia SR, Stoker C, De Jesus JJ, Beldomenico PM, Ramos JG, Luque EH (2006) Organochlorine levels in adipose tissue of women from a littoral region of Argentina. Environ Res 102(1):107–112

    Article  CAS  Google Scholar 

  • Nair AM, Rebello S, Rishad KS, Asok AK, Jisha MS (2015) Biosurfactant facilitated biodegradation of quinalphos at high concentrations by Pseudomonas aeruginosa Q10. Soil Sediment Contam 24:542–553

    Article  CAS  Google Scholar 

  • Nasr HM, El-Demerdash FM, El-Nagar WA (2016) Neuro and renal toxicity induced by chlorpyrifos and abamectin in rats: toxicity of insecticide mixture. Environ Sci Pollut Res Int 23(2):1852–1859

    Article  CAS  Google Scholar 

  • Ojha A, Yaduvanshi SK, Pant SC, Lomash V, Srivastava N (2013) Evaluation of DNA damage and cytotoxicity induced by three commonly used organophosphate pesticides individually and in mixture, in rat tissues. Environ Toxicol 28:543–552

    Article  CAS  Google Scholar 

  • Ortiz-Hernández ML, Sánchez-Salinas E (2010) Biodegradation of the organophosphate pesticide tetrachlorvinphos by bacteria isolated from agricultural soils in México. Rev Int Contam Ambient 26:27–38

    Google Scholar 

  • Pailan S, Sengupta K, Ganguly U, Saha P (2016) Evidence of biodegradation of chlorpyrifos by a newly isolated heavy metal-tolerant bacterium Acinetobacter sp. strain MemCl4. Environ Earth Sci 75:1019

    Article  CAS  Google Scholar 

  • Pakala SB, Gorla P, Pinjari AB, Krovidi RK, Baru R, Yanamandra M, Merrick M, Siddavattam D (2007) Biodegradation of methyl parathion and p-nitrophenol: evidence for the presence of a p-nitrophenol 2-hydroxylase in a Gram-negative Serratia sp. strain DS001. Appl Microbiol Biotechnol 73(6):1452–1462

    Article  CAS  Google Scholar 

  • Patnaik R, Padhy RN (2016) Evaluation of geno-toxicity of methyl parathion and chlorpyrifos to human liver carcinoma cell line (HepG2). Environ Sci Pollut Res Int 23(9):8492–8499

    Article  CAS  Google Scholar 

  • Pawar KR, Mali GV (2014) Biodegradation of Quinolphos insecticide by Pseudomonas strain isolated from grape rhizosphere soils. Int J Curr Microbiol App Sci 3:606–613

    CAS  Google Scholar 

  • Pino N, Peñuela G (2011) Simultaneous degradation of the pesticides methyl parathion and chlorpyrifos by an isolated bacterial consortium from a contaminated site. Int Biodeterior Biodegrad 65:827–831

    Article  CAS  Google Scholar 

  • Poon BH, Leung CK, Wong CK, Wong MH (2005) Polychlorinated biphenyls and organochlorine pesticides in human adipose tissue and breast milk collected in Hong Kong. Arch Environ Contam Toxicol 49(2):274–282

    Article  CAS  Google Scholar 

  • Prabhavathy Das G, Pasha Shaik A, Jamil K (2006) Cytotoxicity and genotoxicity induced by the pesticide profenofos on cultured human peripheral blood lymphocytes. Drug Chem Toxicol 29(3):313–312

    Article  CAS  Google Scholar 

  • Prakash A, Khan S, Aggarwal M, Telang AG, Malik JK (2009) Chlorpyrifos induces apoptosis in murine thymocytes. Toxicol Lett 189:S83

    Article  Google Scholar 

  • Price OR, Walker A, Wood M, Oliver MA (2001) Using geostatistics to evaluate spatial variation in pesticide/soil interactions. In: Walker A (ed) Pesticide behaviour in soil and water. vol 78. British Crop Protection Council, Farnham, pp 233–238

    Google Scholar 

  • Qian B, Zhu LS, Xie H, Wang J, Liu W, Xu QF, Song Y, Xu RJ (2007) Isolation and degrading characters of chlorpyrifos degrading bacteria XZ-3. Huan Jing KeXue 28(12):2827–2832

    CAS  Google Scholar 

  • Qiu XH, Bai WQ, Zhong QZ, Li M, He FQ, Li BT (2006) Isolation and characterization of a bacterial strain of the genus Ochrobactrum with methyl parathion mineralizing activity. J Appl Microbiol 101(5):986–994

    Article  CAS  Google Scholar 

  • Ramanathan MP, Lalithakumari D (1996) Methylparathion degradation by Pseudomonas sp. A3 immobilized in sodium alginate beads. World J Microbiol Biotechnol 12:107–108

    Article  CAS  Google Scholar 

  • Rani NL, Lalitha-kumari D (1994) Degradation of methyl parathion by Pseudomonas putida. Can J Microbiol 4:1000–1004

    Article  Google Scholar 

  • Ray A, Chatterjee S, Ghosh S, Bhattacharya K, Pakrashi A, Deb C (1992) Quinalphos-induced suppression of spermatogenesis, plasma gonadotrophins, testicular testosterone production and secretion in adult rats. Environ Res 57(2):181–189

    Article  CAS  Google Scholar 

  • Rayu S, Nielsen UN, Nazaries L, Singh BK (2017) Isolation and molecular characterization of novel Chlorpyrifos and 3,5,6-trichloro-2-pyridinol-degrading bacteria from sugarcane farm soils. Front Microbiol 8:518

    Article  Google Scholar 

  • Reddy NC, Rao JV (2008) Biological response of earthworm, Eisenia foetida (Savigny) to an organophosphorous pesticide, profenofos. Ecotox Environ Safe 71:574–582

    Article  CAS  Google Scholar 

  • Reiss R, Neal B, Lamb JC, Juberg DR (2012) Acetylcholinesterase inhibition dose-response modeling for chlorpyrifos and chlorpyrifos-oxon. Regul Toxicol Pharmacol 63(1):124–131

    Article  CAS  Google Scholar 

  • Rico EP, de Oliveira DL, Rosemberg DB, Mussulini BH, Bonan CD, Dias RD, Wofchuk S, Souza DO, Bogo MR (2010) Expression and functional analysis of Na+-dependent glutamate transporters from zebrafish brain. Brain Res Bull 81(4–5):517–523

    Article  CAS  Google Scholar 

  • Rubin C, Esteban E, Kieszak S, Hill RH Jr, Dunlop B, Yacovac R, Trottier J, Boylan K, Tomasewski T, Pearce K (2002) Assessment of human exposure and human health effects after indoor application of methyl parathion in Lorain County, Ohio, 1995–1996. Environ Health Perspect 110:1047–1051

    Article  CAS  Google Scholar 

  • Ruparrelia SG, Verma Y, Kasyap SK, Chatterjee BB (1986) A new approach for the use of standard fish toxicological study. In: Dalela RC, Madhysta MN, Joseph MM (eds) Environmental biology, coastal ecosystem. Academy of Environmental Biology, Muzzafarnagar, pp 89–92

    Google Scholar 

  • Sadiqul IM, Ferdous Z, Nannu MT, Mostakim GM, Rahman MK (2016) Acute exposure to a quinalphos containing insecticide (convoy) causes genetic damage and nuclear changes in peripheral erythrocytes of silver barb, Barbonymus gonionotus. Environ Pollut 219:949–956

    Article  CAS  Google Scholar 

  • Safiatou BD, Jean MC, Donald EM (2007) Pesticide residues in soil and water from four cotton growing area of Mali West Africa. J Agric Food Environ Sci 1(1)

    Google Scholar 

  • Salunkhe VP, Sawant IS, Banerjee K, Rajguru YR, Wadkar PN, Oulkar DP, Naik DG, Sawant SD (2013) Biodegradation of profenofos by Bacillus subtilis isolated from grapevines (Vitis vinifera). J Agric Food Chem 61:7195–7202

    Article  CAS  Google Scholar 

  • Sandal S, Yilmaz B (2011) Genotoxic effects of chlorpyrifos, cypermethrin, endosulfan and 2,4-D on human peripheral lymphocytes cultured from smokers and nonsmokers. Environ Toxicol 26(5):433–442

    Article  CAS  Google Scholar 

  • Saxena G, Bharagava RN (2017) Organic and inorganic pollutants in industrial wastes, their ecotoxicological effects, health hazards and bioremediation approaches. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press/Taylor & Francis Group, Boca Raton, pp 23–56. https://doi.org/10.1201/9781315173351-3

    Chapter  Google Scholar 

  • Schuh RA, Lein PJ, Beckles RA, Jett DA (2002) Noncholinesterase mechanisms of chlorpyrifos neurotoxicity: altered phosphorylation of Ca2+/cAMP response element binding protein in cultured neurons. Toxicol Appl Pharmacol 182(2):176–185

    Article  CAS  Google Scholar 

  • Serdar CM, Gibson DT, Munnecke DM, Lancaster JH (1982) Plasmid involvement in parathion hydrolysis by Pseudomonas diminuta. Appl Environ Microbiol 44(1):246–249

    CAS  Google Scholar 

  • Sethunathan N, Yoshida T (1973) A Flavobacterium that degrades diazinon and parathion. Can J Microbiol 19:873–875

    Article  CAS  Google Scholar 

  • Sharmila Begum S, Arundhati A (2016) A study of bioremediation of methyl parathion in vitro using potential Pseudomonas sp. isolated from agricultural soil, Visakhapatnam, India. Int J Curr Microbiol App Sci 5:464–474

    Article  CAS  Google Scholar 

  • Sharmila M, Ramanand K, Sethunathan N (1989) Effect of yeast extract on the degradation of organophosphorus insecticides by soil enrichment and bacterial cultures. Can J Microbiol 35:1105–1110

    Article  CAS  Google Scholar 

  • Shen L, Wania F, Lei YD, Teixeira C, Muir DC, Bidleman TF (2005) Atmospheric distribution and long-range transport behavior of organochlorine pesticides in North America. Environ Sci Technol 39(2):409–420

    Article  CAS  Google Scholar 

  • Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30(3):428–471

    Article  CAS  Google Scholar 

  • Singh BK, Walker A, Morgan JAW, Wright DJ (2003) Effect of soil pH on the biodegradation of chlorpyrifos and isolation of a chlorpyrifos-degrading bacterium. Appl Environ Microbiol 69:5198–5206

    Article  CAS  Google Scholar 

  • Siripattanakul-Ratpukdi S, Vangnai AS, Sangthean P, Singkibut S (2015) Profenofos insecticide degradation by novel microbial consortium and isolates enriched from contaminated chili farm soil. Environ Sci Pollut Res Int 22:320–328

    Article  CAS  Google Scholar 

  • Sobti RC, Krishan A, Pfaffenberger CD (1992) Cytokinetic and cytogenetic effects of some agricultural chemicals on human lymphoid cells in vitro: organophosphates. Mutat Res 102:89–102

    Article  Google Scholar 

  • Somara S, Siddavattam D (1995) Plasmid mediated organophosphate pesticide degradation by Flavobacterium balustinum. Biochem Mol Biol Int 36:627–631

    CAS  Google Scholar 

  • Srivastava MK, Raizada RB, Dikshith TS (1992) Fetotoxic response of technical quinalphos in rats. Vet Hum Toxicol 34(2):131–133

    CAS  Google Scholar 

  • Srivastava S, Narvi SS, Prasad SC (2011) Levels of select organophosphates in human colostrum and mature milk samples in rural region of Faizabad district, Uttar Pradesh, India. Hum Exp Toxicol 30:1458–1463

    Article  CAS  Google Scholar 

  • Tallur PN, Mulla SI, Megadi VB, Talwar MP, Ninnekar HZ (2015) Biodegradation of cypermethrin by immobilized cells of Micrococcus sp. strain CPN 1. Braz J Microbiol 46(3):667–672

    Article  CAS  Google Scholar 

  • Talwar MP, Ninnekar HZ (2015) Biodegradation of pesticide profenofos by the free and immobilized cells of Pseudoxanthomonas suwonensis strain HNM. J Basic Microbiol 55(9):1094–1103

    Article  CAS  Google Scholar 

  • Talwar MP, Mulla SI, Ninnekar HZ (2014) Biodegradation of organophosphate pesticide quinalphos by Ochrobactrum sp. strain HZM. J Appl Microbiol 117(5):1283–1292

    Article  CAS  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    Article  CAS  Google Scholar 

  • Uzunhisarcikli M, Kalender Y, Dirican K, Kalender S, Ogutcu A, Buyukkomurcu F (2007) Acute, subacute and subchronic administration of methyl parathion-induced testicular damage in male rats and protective role of vitamins C and E. Pestic Biochem Physiol 87:115–122

    Article  CAS  Google Scholar 

  • Vandekar M, Plestina R, Wilhelm K (1971) Toxicity of carbamates for mammals. Bull World Health Organ 44:241–249

    CAS  Google Scholar 

  • Kushwaha M, Verma S, Chatterjee S (2016) Profenofos, an acetylcholinesterase-inhibiting organophosphorus pesticide: a short review of its usage, toxicity, and biodegradation. J Environ Qual 45(5):1478–1489

    Article  CAS  Google Scholar 

  • Verma P, Verma P, Sagar R (2013) Variations in N mineralization and herbaceous species diversity due to sites, seasons, and N treatments in a seasonally dry tropical environment of India. For Ecol Manag 297:15–26

    Article  Google Scholar 

  • WHO (2004) Methyl parathion in drinking-water. WHO/SDE/WSH/03.04/106. http://www.who.int/water_sanitation_health/dwq/chemicals/methylparathion.pdf

  • Xu G, Li Y, Zheng W, Peng X, Li W, Yan Y (2007) Mineralization of chlorpyrifos by co-culture of Serratia and Trichosporon spp. Biotechnol Lett 29(10):1469–1473

    Article  CAS  Google Scholar 

  • Xu G, Zheng W, Li Y, Wang S, Zhang J, Yan Y (2008) Biodegradation of chlorpyrifos and 3,5,6-trichloro-2-pyridinol by a newly isolated Paracoccus sp. strain TRP. Int Biodeterior Biodegrad 62:51–56

    Article  CAS  Google Scholar 

  • Yadav M, Srivastva N, Singh RS, Upadhyay SN, Dubey SK (2014) Biodegradation of chlorpyrifos by Pseudomonas sp. in a continuous packed bed bioreactor. Bioresour Technol 165:265–269

    Article  CAS  Google Scholar 

  • Yadav M, Shukla AK, Srivastva N, Upadhyay SN, Dubey SK (2016) Utilization of microbial community potential for removal of chlorpyrifos: a review. Crit Rev Biotechnol 36(4):727–742

    CAS  Google Scholar 

  • Yali C, Xianen Z, Hong L, W Y XX (2002) Study on Pseudomonas sp. WBC-3 capable of complete degradation of methyl parathion. Wei Sheng Wu Xue Bao 42:490–497

    Google Scholar 

  • Yanez L, Ortiz-Perez D, Batres LE, Borja-Aburto VH, Diaz-Barriga F (2002) Levels of dichlorodiphenyltrichloroethane and deltamethrin in humans and environmental samples in malarious areas of Mexico. Environ Res 88(3):174–181

    Article  CAS  Google Scholar 

  • Yang L, Zhao YH, Zhang BX, Yang CH, Zhang X (2005) Isolation and characterization of a chlorpyrifos and 3,5,6-trichloro-2-pyridinol degrading bacterium. FEMS Microbiol Lett 251(1):67–73

    Article  CAS  Google Scholar 

  • Yang C, Liu N, Guo X, Qiao C (2006) Cloning of mpd gene from a chlorpyrifos-degrading bacterium and use of this strain in bioremediation of contaminated soil. FEMS Microbiol Lett 265:118–125

    Article  CAS  Google Scholar 

  • Yashwantha B, Pamanji R, Venkateswara Rao J (2016) Toxicomorphomics and toxicokinetics of quinalphos on embryonic development of zebrafish (Danio rerio) and its binding affinity towards hatching enzyme. Aquat Toxicol 180:155–163

    Article  CAS  Google Scholar 

  • Zhang R, Xu X, Chen W, Huang Q (2016) Genetically engineered Pseudomonas putida X3 strain and its potential ability to bioremediate soil microcosms contaminated with methyl parathion and cadmium. Appl Microbiol Biotechnol 100(4):1987–1997. https://doi.org/10.1007/s00253-015-7099-7

    Article  CAS  Google Scholar 

  • Zhao G, Huang Q, Rong X, Cai P, Liang W, Dai K (2014) Interfacial interaction between methyl parathion-degrading bacteria and minerals is important in biodegradation. Biodegradation 25:1–9

    Article  CAS  Google Scholar 

  • Zheng Y, Long L, Fan Y, Gan J, Fang J, Jin W (2013) A review on the detoxification of organophosphorus compounds by microorganisms. Afr J Microbiol Res 7:2127–2134

    Article  Google Scholar 

  • Zhongli C, Shunpeng L, Guoping F (2001) Isolation of methyl parathion-degrading strain M6 and cloning of the methyl parathion hydrolase gene. Appl Environ Microbiol 67:4922–4925

    Article  CAS  Google Scholar 

  • Zhu J, Zhao Y, Qiu J (2010) Isolation and application of a chlorpyrifos-degrading Bacillus licheniformis ZHU-1. Afr J Microbiol Res 4:2716–2719

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mulla, S.I. et al. (2020). Organophosphate Pesticides: Impact on Environment, Toxicity, and Their Degradation. In: Saxena, G., Bharagava, R. (eds) Bioremediation of Industrial Waste for Environmental Safety. Springer, Singapore. https://doi.org/10.1007/978-981-13-1891-7_13

Download citation

Publish with us

Policies and ethics