Skip to main content

Arsenic Contamination in Environment, Ecotoxicological and Health Effects, and Bioremediation Strategies for Its Detoxification

  • Chapter
  • First Online:
Bioremediation of Industrial Waste for Environmental Safety

Abstract

The present day global environmental pollution is resultant of modernization, industrialization, urbanization, and several other anthropogenic activities, which involve the huge application of trace metals. Among the trace metals, Arsenic (As) is known as the leading toxicant to the environment worldwide and having the various toxic effects on human and animal health. Exposure of As causes various types of health effects like dermal and neurological problems, reproductive and pregnancy effects, cardiovascular effects, diabetes mellitus, diseases of the respiratory system, multiorgan cancers, etc. The persistence of As in the environment may pollute or contaminate soils and aqueous system as both natural components or as the result of human activity. In recent years, the development of efficient green chemistry methods for detoxification of trace metal poisoning has become a major focus of researchers. It has been investigated in order to find an eco-friendly and recyclable technique for the removal of trace elements contamination from the natural resources. Bioremediation process in this regards is an option that offers the possibility to reduce or render trace and toxic elements such as As using plants and microbes. Among the various bioremediation processes, phytoremediation and bioremediation using microbes are quite effective. Phytoremediation includes the removal of contaminants with the help of green plants, while the microbial bioremediation includes the removal of trace and toxic elements by microorganisms (bacteria, fungi, yeast and algae) as sorbents. The aim of this chapter is to give an overview of the As contamination in the environment and also the mechanism of removal of the As from the contaminated resources by the potent application of plants and microbes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharyya SK, Shah BA (2007) Groundwater arsenic contamination affecting different geologic domains in India–a review: influence of geological setting, fluvial geomorphology and quaternary stratigraphy. J Environ Sci Health A 42:1795–1805

    Article  CAS  Google Scholar 

  • AGRG (1978) The Wolfson geochemical atlas of England and Wales. Clarendon Press, Oxford

    Google Scholar 

  • Ahmed KM, Bhattacharya P, Hasan MA, Akhter SH, Alam SM, Bhuyian MH (2004) Arsenic enrichment in groundwater of the alluvial aquifers in Bangladesh: an overview. Appl Geochem 19:181–200

    Article  CAS  Google Scholar 

  • Ahsan DA, DelValls TA, Blasco J (2009) Distribution of arsenic and trace metals in the floodplain agricultural soil of Bangladesh. Bull Environ Contam Toxicol 82:11–15

    Article  CAS  Google Scholar 

  • Aldrich MV, Peralta-Videa JR, Parsons JG, Gardea-Torresdey JL (2007) Examination of arsenic(III) and (V) uptake by the desert plant species mesquite (Prosopis spp.) using X-ray absorption spectroscopy. Sci Total Environ 379(2–3):249–255

    Article  CAS  Google Scholar 

  • Allen A (2001) Containment landfills: the myth of sustainability. Eng Geol 60:3–19

    Article  Google Scholar 

  • Alvarado S, Guedez M, Lue-Meru MP, Nelson G, Alvaro A, Jesus AC, Gyula Z (2008) Arsenic removal from waters by bioremediation with the aquatic plants water hyacinth (Eichhornia crassipes) and Lesser Duckweed (Lemna minor). Bioresour Technol 99:8436–8440

    Article  CAS  Google Scholar 

  • Anawar HM, Akai J, Yoshioka T, Konohira E, Lee JY, Fukuhara H, TariKulAlam M, Garcia-Sanchez A (2006) Mobilization of arsenic in groundwater of Bangladesh: evidence from an incubation study. Environ Geochem Health 28:553–565

    Article  CAS  Google Scholar 

  • Bahar MM, Megharaj M, Naidu R (2013) Bioremediation of arsenic-contaminated water: recent advances and future prospects. Water Air Soil Pollut 224:1722

    Article  CAS  Google Scholar 

  • Baker AJ, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, pp 85–107

    Google Scholar 

  • Becker EW (1983) Limitations of heavy metal removal from waste water by means of algae. Water Res 17(4):459–466

    Article  CAS  Google Scholar 

  • Bharagava RN, Saxena G, Mulla SI, Patel DK (2017a) Characterization and identification of recalcitrant organic pollutants (ROPs) in tannery wastewater and its phytotoxicity evaluation for environmental safety. Arch Environ Contam Toxicol. https://doi.org/10.1007/s00244-017-0490-x

    Article  CAS  Google Scholar 

  • Bharagava RN, Chowdhary P, Saxena G (2017b) Bioremediation: an ecosustainable green technology: its applications and limitations. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press/Taylor & Francis Group, Boca Raton, pp 1–22. https://doi.org/10.1201/9781315173351-2

    Chapter  Google Scholar 

  • Bharagava RN, Saxena G, Chowdhary P (2017c) Constructed wetlands: an emerging phytotechnology for degradation and detoxification of industrial wastewaters. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press/Taylor & Francis Group, Boca Raton, pp 397–426. https://doi.org/10.1201/9781315173351-15

    Chapter  Google Scholar 

  • Bhattacharya P, Mukherjee AB, Bundschuh J, Zevenhoven R, Loeppert RH (2007) Arsenic in soil and groundwater environment: biogeochemical interactions, health effects and remediation, Trace metals and other contaminants in the environment (Series Editor Nriagu JO), vol 9. Elsevier, Amsterdam, p 645

    Google Scholar 

  • Bhattacharya P, Naidu R, Polya DA, Mukherjee A, Bundschuh J, Charlet L (2014) Arsenic in hydrological processes-sources, speciation, bioavailability and management. J Hydrol 518:279–283

    Article  CAS  Google Scholar 

  • Bondada BR, Ma LQ (2003) Tolerance of heavy metals in vascular plants: arsenic hyperaccumulation by Chinese brake fern (Pteris vittata L.). In: Chandra S, Srivastava M (eds) Pteridology in the new millenium. Kluwer Academic Publishers, Dordrecht, pp 397–420

    Chapter  Google Scholar 

  • Boyle RW, Jonasson IR (1973) The geochemistry of as and its use as an indicator element in geochemical prospecting. J Geochem Explor 2:251–296

    Article  CAS  Google Scholar 

  • Bradley R, Burt AJ, Read DJ (1981) Mycorrhizal infection and resistance to heavy metal toxicity in Calluna vulgaris. Nature 292:335–337

    Article  CAS  Google Scholar 

  • Brown MT, Wilkins DA (1985) Zinc tolerance of mycorrhizal Betula. New Phytol 99:101–106

    Article  CAS  Google Scholar 

  • Carrasco JA, Armario P, Pajuelo E, Burgos A, Caviedes MA, Lόpez R et al (2005) Isolation and characterization of symbiotically effective rhizobium resistant to arsenic and heavy metals after the toxic spill at the Aznalcóllar pyrite mine. Soil Biol Biochem 37:1131–1140

    Article  CAS  Google Scholar 

  • Cernansky S, Urik M, Sevc J, Khun K (2007) Biosorption and biovolatilization of arsenic by heat-resistant fungi. Environ Sci Pollut Res 14:31–35

    Article  CAS  Google Scholar 

  • Cernansky S, Kolencik M, Sevc J, Urik M, Hiller E (2009) Fungal volatilization of trivalent and pentavalent arsenic under laboratory conditions. Bioresour Technol 100:1037–1040

    Article  CAS  Google Scholar 

  • Chakraborti D, Rahman MM, Paul K, Chowdhury UK, Sengupta MK, Lodh D, Chanda CR, Saha KC, Mukherjee SC (2002) Arsenic calamity in the Indian sub-continent-what lessons have been learned? Talanta 58:3–22

    Article  CAS  Google Scholar 

  • Chakraborti D, Rahman MM, Murrill M, Das R, Patil SG, Sarkar A, Dadapeer HJ, Yendigeri S, Ahmed R, Das KK (2013) Environmental arsenic contamination and its health effects in a historic gold mining area of the Mangalur greenstone belt of Northeastern Karnataka, India. J Hazard Mater 262:1048–1055

    Article  CAS  Google Scholar 

  • Chakraborti D, Rahman MM, Ahamed S, Dutta RN, Pati S, Mukherjee SC (2016) Arsenic groundwater contamination and its health effects in Patna district (capital of Bihar) in the middle Ganga plain, India. Chemosphere 152:520–529

    Article  CAS  Google Scholar 

  • Chakraborti D, Rahman MM, Das B, Chatterjee A, Das D, Nayak B, Pal A, Chowdhury UK, Ahmed S, Biswas BK, Sengupta MK, Hossain MA, Samanta Roy MM, Dutta RN, Saha KC, Mukherjee SC, Pati S, Kar PB, Mukherjee A, Kumar M (2017) Hydrogeol J 25(4):1165–1181

    Article  CAS  Google Scholar 

  • Chandra R, Saxena G, Kumar V (2015) Phytoremediation of environmental pollutants: an eco-sustainable green technology to environmental management. In: Chandra R (ed) Advances in biodegradation and bioremediation of industrial waste, 1st edn. CRC Press/Taylor & Francis Group, Boca Raton, pp 1–30. https://doi.org/10.1201/b18218-2

    Chapter  Google Scholar 

  • Chen B, Xiao X, Zhu Y-G, Smith FA, Xie ZM, Smith SE (2007) The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn. Sci Total Environ 379:226–234

    Article  CAS  Google Scholar 

  • Chowdhury TR, Basu GK, Mandal BK, Biswas BK, Samanta G, Chowdhury UK, Chanda CR, Lodh D, Roy SL, Saha KC, Roy S (1999) Arsenic poisoning in the Ganges delta. Nature 401:545–546

    Article  CAS  Google Scholar 

  • Datta DK, Subramanian V (1997) Texture and mineralogy of sediments from the Ganges-Brahmaputra-Meghna river system in the Bengal basin, Bangladesh and their environmental implications. Environ Geol 30:181–188

    Article  Google Scholar 

  • Dehn B, Schüepp H (1989) Influence of VA mycorrhizae on the uptake and distribution of heavy metals in plants. Agricult Ecosyst Environ 29:79–83

    Article  Google Scholar 

  • Dey U, Chatterjee S, Mondal NK (2016) Isolation and characterization of arsenic-resistant bacteria and possible application in bioremediation. Biotechnol Rep 10:1–7

    Article  Google Scholar 

  • Dominguez MT, Maranon T, Murillo JM, Schulin R, Robinson BH (2008) Trace element accumulation in woody plants of the Guadiamar Valley, SW Spain: a large-scale phytomanagement case study. Environ Pollut 152:50–59

    Article  CAS  Google Scholar 

  • Fayiga AO, Saha UK (2016) Arsenic hyperaccumulating fern: implications for remediation of arsenic contaminated soils. Geoderma 284:132–143

    Article  CAS  Google Scholar 

  • Finkelman RB, Belkin HE, Zheng B (1999) Health impacts of domestic coal use in China. Proc Natl Acad Sci India Sect A Phys Sci USA 96:3427–3431

    Article  CAS  Google Scholar 

  • Förstner U, Haase I (1998) Geochemical demobilization of metallic pollutants in solid waste-implications for arsenic in waterworks sludges. J Geochem Explor 62:29–36

    Article  Google Scholar 

  • French CJ, Dickinson NM, Putwain PD (2006) Woody biomass phytoremediation of contaminated brownfield land. Environ Pollut 141:387–395

    Article  CAS  Google Scholar 

  • Gadd GM (1993) Interactions of fungi with toxic metals. New Phytol 124:25–60

    Article  CAS  Google Scholar 

  • Gautam S, Kaithwas G, Bharagava RN, Saxena G (2017) Pollutants in tannery wastewater, pharmacological effects and bioremediation approaches for human health protection and environmental safety. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press/Taylor & Francis Group, Boca Raton, pp 369–396. https://doi.org/10.1201/9781315173351-14

    Chapter  Google Scholar 

  • Ghosh M, Shen J, Rosen BP (1999) Pathway of As(III) detoxification in Sachharomyces cerevisiae. Proc Natl Acad Sci U S A 96:5001–5006

    Article  CAS  Google Scholar 

  • Goldberg S, Glaubig RA (1988) Anion sorption on a calcareous, montmorillonitic soil-arsenic. Soil Sci Soc Am J 52:1297–1300

    Article  CAS  Google Scholar 

  • Gosio B (1892) Action of microphytes on solid compounds of arsenic: a recapitulation. Science 19:104–106

    Google Scholar 

  • Goutam SP, Saxena G, Singh V, Yadav AK, Bharagava RN (2018) Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater. Chem Eng J 336:386–396. https://doi.org/10.1016/j.cej.2017.12.029

    Article  CAS  Google Scholar 

  • Granchinho SCR, Franz CM, Polishchuk E, Cullen WR, Reimer KJ (2002) Transformation of arsenic (V) by the fungus Fusarium oxysporum melonis isolated from the alga Fucus gardneri. Appl Organomet Chem 16:721–726

    Article  CAS  Google Scholar 

  • Hartley W, Dickinson NM, Riby P, Lepp NW (2009) Arsenic mobility in brownfield soils amended with green waste compost or biochar and planted with Miscanthus. Environ Pollut 157:2654–2662

    Article  CAS  Google Scholar 

  • Hasan MA, von Brömssen M, Bhattacharya P, Ahmed KM, Sikder AM, Jacks G, Sracek O (2009) Geochemistry and mineralogy of shallow alluvial aquifers in Daudkandi upazila in the Meghna flood plain, Bangladesh. Environ Geol 57:499–511

    Article  CAS  Google Scholar 

  • Huang A, Teplitski M, Rathinasabapathi B, Ma LQ (2010) Characterization of arsenic-resistant bacteria from the rhizosphere of arsenic hyperaccumulator Pteris vittata L. Can J Microbiol 56:236–246

    Article  CAS  Google Scholar 

  • Hughes MF, Beck BD, Chen Y, Lewis AS, Thomas DJ (2011) Arsenic exposure and toxicology: a historical perspective. Toxicol Sci 123:305–332

    Article  CAS  Google Scholar 

  • Islam FS, Gault AG, Boothman C, Polya DA, Charnock JM, Chatterjee D, Lloyd JR (2004) Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 430:68–71

    Article  CAS  Google Scholar 

  • Islam MS, Zaman MWU, Rahman MM (2013) Phytoaccumulation of arsenic from arsenic contaminated soils by Eichhornia crassipes L., Echinochloa crusgalli L. and Monochoria hastata L. in Bangladesh. Int J Environ Prot 3(4):17–27

    Google Scholar 

  • Jönsson J, Sherman DM (2008) Sorption of As (III) and As (V) to siderite, green rust (fougerite) and magnetite: implications for arsenic release in anoxic groundwaters. Chem Geol 255:173–181

    Article  CAS  Google Scholar 

  • Koslowsky SD, Boerner REJ (1989) Interactive effects of aluminium, phosphorus and mycorrhizae on growth and nutrient uptake of Panicum virgatum L (Poaceae). Environ Poll 61:107–125

    Article  CAS  Google Scholar 

  • Kumar M, Rahman MM, Ramanathan AL, Naidua R (2016) Arsenic and other elements in drinking water and dietary components from the middle Gangetic plain of Bihar, India: health risk index. Sci Total Environ 539:125–134

    Article  CAS  Google Scholar 

  • Liu S, Zhang F, Chen J, Sun GX (2011) Arsenic removal from contaminated soil via biovolatilization by genetically engineered bacteria under laboratory conditions. J Environ Sci 23(9):1544–1550

    Article  CAS  Google Scholar 

  • Lombi E, Zhao FJ, Fuhrmann M, Ma LQ, McGrath SP (2002) Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata. New Phytol 156:195–203

    Article  CAS  Google Scholar 

  • Luongo T, Ma L (2005) Characteristics of arsenic accumulation by Pteris and non-Pteris ferns. Plant Soil 277:117–126

    Article  CAS  Google Scholar 

  • Ma L, Komar KM, Tu C (2001a) A fern that hyperaccumulates arsenic-A hardy, versatile, fast-growing plant helps to remove arsenic from contaminated soils. Nature 409:579

    Article  CAS  Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001b) A fern that hyper-accumulates arsenic. Nature 409:579

    Article  CAS  Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235

    Article  CAS  Google Scholar 

  • Mason B (1966) Principles of geochemistry, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Matschullat J (2000) Arsenic in the geosphere-a review. Sci Total Environ 249:97–312

    Article  Google Scholar 

  • Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154:29–43

    Article  CAS  Google Scholar 

  • Meharg AA, Rahman MM (2003) Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption. Environ Sci Technol 37:229–234

    Article  CAS  Google Scholar 

  • Mkandawire M, Dudel G (2005) Accumulation of arsenic in Lemna gibba L. (duckweed) in tailing waters of two abandoned uranium mining sites in Saxony, Germany. Sci Total Environ 336(1–3):81–89

    Article  CAS  Google Scholar 

  • Momplaisir GM, Rosal CG, Heithmar EM (2001) Arsenic speciationmethods for studying the environmental fate of organoarsenic animal-feed additives. U.S. EPA, NERL, Las Vegas, pp 01–11

    Google Scholar 

  • Mukherjee A, Bhattacharya P, Shi F, Fryar AE, Mukherjee AB, Xie ZM, Jacks G, Bundschuh J (2009) Chemical evolution in the high arsenic groundwater of the Huhhot basin (Inner Mongolia, PR China) and its difference from the western Bengal basin (India). Appl Geochem 24(10):1835–1851

    Article  CAS  Google Scholar 

  • Mukherjee A, Das D, Mondal SK, Biswas R, Das TK, Boujedaini N, Khuda-Bukhsh R (2010) Tolerance of arsenate-induced stress in Aspergillus niger, a possible candidate for bioremediation. Ecotoxicol Environ Saf 73:172–182

    Article  CAS  Google Scholar 

  • Mumford AC, Barringer JL, Benzel WM, Reilly PA, Young LO (2012) Microbial transformations of arsenic: mobilization from glauconitic sediments to water. Water Res 46:2859–2868

    Article  CAS  Google Scholar 

  • National Institute of Hydrology (NIH), Roorkee, Central Groundwater Board (CGWB) and Ministry of Water Resources, Government of India (GoI) (2010) Mitigation and remedy of groundwater arsenic menace in India: a vision document by New Delhi. pp 1–7

    Google Scholar 

  • Norra S, Berner Z, Agarwala P, Wagner F, Chandrasekharam D, Stüben D (2005) Impact of irrigation with As rich groundwater on soil and crops: a geochemical case study in West Bengal Delta Plain, India. Appl Geochem 20:1890–1906

    Article  CAS  Google Scholar 

  • Odutayo OI, Feyisola RT, Godonu KG, Makinde OA (2015) Phytotoxicity level and effects of arsenic phytoextraction using Helianthus annuus L. (sunflower). J Nat Sci Res 5(1):37–41

    Google Scholar 

  • Paivoke AE, Simola LK (2001) Arsenate toxicity to Pisum sativum: mineral nutrients, chlorophyll content, and phytase activity. Ecotoxicol Environ Saf 49(2):11–21

    Article  CAS  Google Scholar 

  • Pearce RB, Callow ME, Macaskie LE (1998) Fungal volatilization of arsenic and antimony and the sudden infant death syndrome. FEMS Microbiol Lett 158:261–265

    Article  CAS  Google Scholar 

  • Rahman F, Chen Z, Naidu R (2009) A comparative study of the extractability of arsenic species from silverbeet and amaranth vegetables. Environ Geochem Health 31(1):103–113

    Article  CAS  Google Scholar 

  • Rathinasabapathi B, Raman SB, Kertulis G, Ma LQ (2006) Arsenic-resistant proteobacterium from the phyllosphere of arsenic-hyperaccumulating fern (Pteris vittata L.) reduces arsenate to arsenite. Can J Microbiol 52:695–700

    Article  CAS  Google Scholar 

  • Ravenscroft P (2001) Distribution of groundwater arsenic in Bangladesh related to geology. In: Jack G, Bhattacharya P, Khan AA (eds) Groundwater arsenic contamination in the Bengal Delta plain of Bangladesh. KTH Special Publication. TRITA-AMI report 3084. pp 41–56

    Google Scholar 

  • Ravenscroft P, Burgess WG, Ahmed KM, Burren M, Perrin J (2005) Arsenic in groundwater of the Bengal basin, Bangladesh: distribution, filed relations, and hydrological setting. Hydrogeol J 13:727–751

    Article  CAS  Google Scholar 

  • Ravenscroft P, Brammer H, Richards K (2009) Arsenic pollution: a global synthesis. Wiley-Blackwell, Chichester

    Book  Google Scholar 

  • Rosen BP (2002) Biochemistry of arsenic detoxification. FEBS Lett 529:86–92

    Article  CAS  Google Scholar 

  • Routh J, Saraswathy A, Collins D (2007) Arsenicicoccus bolidensis a novel arsenic reducing actinomycete in contaminated sediments near the Adak mine (northern Sweden): impact on water chemistry. Sci Total Environ 379:216–225

    Article  CAS  Google Scholar 

  • Roychowdhury T, Tokunaga H, Ando M (2003) Survey of arsenic and other heavy metals in food composites and drinking water and estimation of dietary intake by the villagers from an arsenic-affected area of West Bengal, India. Sci Total Environ 308:15–35

    Article  CAS  Google Scholar 

  • Saha D (2009) Arsenic groundwater contamination in parts of middle Ganga plain, Bihar. Curr Sci 97:753–755

    CAS  Google Scholar 

  • Salido AL, Hasty KL, Lim JM, Butcher DJ (2003) Phytoremediation of arsenic and lead in contaminated soil using Chinese brake ferns (Pteris vittata) and Indian mustard (Brassica juncea). Int J Phytoremediation 5(2):89–103

    Article  CAS  Google Scholar 

  • Salmassi TM, Venkateswaren K, Satomi M, Newman DK, Hering JG (2002) Oxidation of arsenite by Agrobacterium albertimagni AOL15, sp. nov., isolated from hot creek, California. Geomicrobiol J 19(1):53–66

    Article  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Ann Rev Plant Physiol Plant Mol Biol 49:643–668

    Article  CAS  Google Scholar 

  • Sanz E, Munoz-Olivas R, Camara C, Sengupta MK, Ahamed S (2007) Arsenic speciation in rice, straw, soil, hair and nails samples from the arsenic-affected areas of Middle and Lower Ganga plain. J Environ Sci Health A Tox Hazard Subst Environ Eng 42:1695–1705

    Article  CAS  Google Scholar 

  • Saxena G, Bharagava RN (2015) Persistent organic pollutants and bacterial communities present during the treatment of tannery wastewater. In: Chandra R (ed) Environmental waste management, 1st edn. CRC Press/Taylor & Francis Group, Boca Raton, pp 217–247. https://doi.org/10.1201/b19243-10

    Chapter  Google Scholar 

  • Saxena G, Bharagava RN (2017) Organic and inorganic pollutants in industrial wastes, their ecotoxicological effects, health hazards and bioremediation approaches. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press/Taylor & Francis Group, Boca Raton, pp 23–56. https://doi.org/10.1201/9781315173351-3

    Chapter  Google Scholar 

  • Saxena PK, Krishnaraj S, Dan T, Perras MR, Vettakkorumakankav NN (1999) Phytoremediation of metal contaminated and polluted soils. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants-from molecules to ecosystems. Springer, Berlin, pp 305–329

    Chapter  Google Scholar 

  • Saxena G, Chandra R, Bharagava RN (2016) Environmental pollution, toxicity profile and treatment approaches for tannery wastewater and its chemical pollutants. Rev Environ Contam Toxicol 240:31–69. https://doi.org/10.1007/398_2015_5009

    Article  CAS  Google Scholar 

  • Saxena G, Purchase D, Mulla SI, Saratale GD, Bharagava RN (2018) Phytoremediation of heavy metal-contaminated sites: environmental considerations, field studies, sustainability and future prospects. J Environ Manag

    Google Scholar 

  • Shacklette HT, Boerngen JG, Keith JR (1974) Selenium, fluorine, and arsenic in superficial materials of the conterminous United States. US Geol. Surv., Circ, vol 692. US Government Printing Office, Washington, DC

    Google Scholar 

  • Shah BA (2008) Role of quaternary stratigraphy on arsenic-contaminated groundwater from parts of Middle Ganga Plain, UP–Bihar, India. Environ Geol 35:1553–1561

    Article  CAS  Google Scholar 

  • Singh IB (1996) Late Quaternary sedimentation of Ganga plain foreland basin. Geol Surve India Spec Publ 21:161–172

    Google Scholar 

  • Singh SK, Ghosh AK (2011) Entry of arsenic into food material-a case study. World Appl Sci J 13:385–390

    CAS  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behavior and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  CAS  Google Scholar 

  • Srivastava S, Sharma YK (2013) Arsenic occurrence and accumulation in soil and water of eastern districts of Uttar Pradesh, India. Environ Monit Assess 18:4995–5002

    Article  CAS  Google Scholar 

  • Srivastava S, Singh N (2014) Mitigation approach of arsenic toxicity in chickpea grown in arsenic amended soil with arsenic tolerant plant growth promoting Acinetobacter sp. Ecol Eng 70:146–153

    Article  Google Scholar 

  • Srivastava M, Ma LQ, Santos J (2006) Three new arsenic hyperaccumulating ferns. Sci Total Environ 364:24–31

    Article  CAS  Google Scholar 

  • Srivastava PK, Vaish A, Dwivedi S, Chakrabarty D, Singh N, Tripathi RD (2011) Biological removal of arsenic pollution by soil fungi. Sci Total Environ 409:2430–2442

    Article  CAS  Google Scholar 

  • Stuben D, Berner Z, Chandrasekharam D, Karmakar J (2003) Arsenic enrichment in groundwater of West Bengal, India: geochemical evidence for mobilization of As under reducing conditions. Appl Geochem 18(9):1417–1434

    Article  CAS  Google Scholar 

  • Takeuchi M, Kawahata H, Gupta LP, Kita N, Morishita Y, Ono Y, Komai T (2007) Arsenic resistance and removal by marine and non-marine bacteria. J Biotechnol 127(3):434–442

    Article  CAS  Google Scholar 

  • Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJM (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25(4):158–165

    Article  CAS  Google Scholar 

  • Tu C, Ma LQ (2002) Effects of arsenic concentrations and forms on arsenic uptake by the hyperaccumulator ladder brake. J Environ Qual 31:641–647

    Article  CAS  Google Scholar 

  • Tu C, Ma L (2003) Effects of arsenate and phosphate on their accumulation by an arsenic hyperaccumulator Pteris vittata L. Plant Soil 249:373–382

    Article  CAS  Google Scholar 

  • Tu C, Ma LQ, Bondada B (2002) Arsenic accumulation in the hyper-accumulator Chinese brake fern and its utilization potential for phytoremediation. J Environ Qual 31:1671–1675

    Article  CAS  Google Scholar 

  • Vala AK (2010) Tolerance and removal of arsenic by a facultative marine fungus Aspergillus candidus. Bioresour Technol 101:2565–2567

    Article  CAS  Google Scholar 

  • Vamerali T, Bandiera M, Coletto L, Zanetti F, Dickinson NM, Mosca G (2009) Phytoremediation trials on metal-and arsenic-contaminated pyrite wastes (Torviscosa, Italy). Environ Pollut 157:887–894

    Article  CAS  Google Scholar 

  • Vazquez S, Agha R, Granado A, Sarro MJ, Esteban E, Penalosa JM, Carpena RO (2006) Use of white lupin plant for phytostabilization of Cd and As polluted acid soil. Water Air Soil Poll 177:349–365

    Article  CAS  Google Scholar 

  • Vicky-Singh, Brar MS, Preeti-Sharma, Malhi SS (2010) Arsenic in water, soil, and rice plants in the Indo-Gangetic plains of northwestern India. Commun Soil Sci Plant Anal 41:1350–1360

    Article  CAS  Google Scholar 

  • Wang S, Zhao X (2009) On the potential of biological treatment for arsenic contaminated soils and groundwater. J Environ Manag 90(8):2367–2376

    Article  CAS  Google Scholar 

  • Wang HB, Wong MH, Lan CY et al (2007) Uptake and accumulation of arsenic by 11 Pteris taxa from Southern China. Environ Pollut 145:225–233

    Article  CAS  Google Scholar 

  • Wang Z, Luo Z, Yan C (2013) Accumulation, transformation, and release of inorganic arsenic by the freshwater cyanobacterium Microcystis aeruginosa. Environ Sci Pollut Res 20(10):7286–7295

    Article  CAS  Google Scholar 

  • Wenzel WW, Lombi E, Adriano DC (1999) Biogeochemical processes in the rhizosphere: role in phytoremediation of metal-polluted sites. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants – from molecules to ecosystems. Springer, Heidelberg/Berlin, pp 273–303

    Chapter  Google Scholar 

  • WHO (2011) Guideline for Drinking-water Quality, fourth edn. World Health Organization, Geneva

    Google Scholar 

  • Zhang W, Cai Y, Tu C, Ma LQ (2002) Arsenic speciation and distribution in an arsenic hyper-accumulating plant. Sci Total Environ 300:167–177

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, M., Yadav, A., Ramanathan, A.L. (2020). Arsenic Contamination in Environment, Ecotoxicological and Health Effects, and Bioremediation Strategies for Its Detoxification. In: Saxena, G., Bharagava, R. (eds) Bioremediation of Industrial Waste for Environmental Safety. Springer, Singapore. https://doi.org/10.1007/978-981-13-1891-7_12

Download citation

Publish with us

Policies and ethics