Skip to main content

D-SCAP: DDoS Attack Traffic Generation Using Scapy Framework

  • Conference paper
  • First Online:
Advances in Big Data and Cloud Computing

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 750))

Abstract

Bots are harmful processes controlled by a Command and Control (C&C) infrastructure. A group of bots is known as botnet to launch different network attacks. One of the most prominent network attacks is Distributed Denial of Service (DDoS) attack. Bots are the main source for performing the harmful DDoS attacks. In this paper, we introduce a D-SCAP (DDoS Scapy framework based) bot to generate high volumes of DDoS attack traffic. The D-SCAP bot generates and sends continuous network packets to the victim machine based on the commands received from the C&C server. The DDoS attack traffic can be generated for cloud environment. The D-SCAP bot and the C&C server are developed using Python language and Scapy framework. The D-SCAP bot is compared with the existing well-known DDoS bots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rajab, M., Zarfoss, J., Monrose, F., Terzis, A.: A multifaceted approach to understanding the botnet phenomenon. In: Proceedings of 6th ACM SIGCOMM Conference on Internet Measurement (IMC’06), pp. 41–52 (2006)

    Google Scholar 

  2. Zhang, L., Yu, S., Wu, D., Watters, P.: A survey on latest botnet attack and defense. In: 2011 IEEE 10th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), pp. 53–60. IEEE (2011)

    Google Scholar 

  3. Kalpika, R., Vasudevan, A.R.: Detection of zeus bot based on host and network activities. In: International Symposium on Security in Computing and Communication, pp. 54–64. Springer, Singapore (2017)

    Google Scholar 

  4. Mahmoud, M., Nir, M., Matrawy, A.: A survey on botnet architectures, detection and defences. IJ Netw. Secur. 17(3), 264–281 (2015)

    Google Scholar 

  5. Oikarinen, J., Reed, D.: Internet relay chat protocol. RFC1459 (1993)

    Google Scholar 

  6. Lee, J.-S., Jeong, H.C., Park, J.H., Kim, M., Noh, B.N.: The activity analysis of malicious http-based botnets using degree of periodic repeatability. In: SECTECH’08. International Conference on Security Technology, pp. 83–86. IEEE (2008)

    Google Scholar 

  7. http://www.secdev.org/projects/scapy/

  8. Hachem, N., Mustapha, Y.B., Granadillo, G.G., Debar, H.: Botnets: lifecycle and taxonomy. In: Proceedings of the Conference on Network and Information Systems Security (SAR-SSI), pp. 1–8 (2011)

    Google Scholar 

  9. Choi, H., Lee, H., Kim, H.: BotGAD: detecting botnets by capturing group activities in network traffic. In: Proceedings of the Fourth International ICST Conference on Communication System Software and Middleware, p. 2. ACM (2009)

    Google Scholar 

  10. Bailey, M., Cooke, E., Jahanian, F., Yunjing, X., Karir, M.: A survey of botnet technology and defenses. In: Proceedings of the Cybersecurity Applications & Technology Conference for Homeland Security (CATCH), pp. 299–304 (2009)

    Google Scholar 

  11. Guri, M., Mirsky, Y., Elovici, Y.: 9-1-1 DDoS: attacks, analysis and mitigation. In: 2017 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 218–232. IEEE (2017)

    Google Scholar 

  12. Zargar, S.T., Joshi, J., Tipper, D.: A survey of defense mechanisms against distributed denial of service (ddos) flooding attacks. IEEE Commun. Surv. Tutorials 15(4), 2046–2069 (2013)

    Google Scholar 

  13. Kaur, H., Behal, S., Kumar, K.: Characterization and comparison of distributed denial of service attack tools. In: 2015 International Conference on Green Computing and Internet of Things (ICGCIoT), pp. 1139–1145. IEEE (2015)

    Google Scholar 

  14. Specht, S.M., Lee, R.B.: Distributed denial of service: taxonomies of attacks, tools, and countermeasures. In: ISCA PDCS, pp. 543–550 (2004)

    Google Scholar 

  15. https://www.sophos.com/en-us/threat-center/threat-analyses/viruses-and-spyware/W32~Agobot-NG/detailed-analysis.aspx

  16. https://www.sophos.com/en-us/threat-center/threat-analyses/viruses-and-spyware/Troj~SpyBot-J/detailed-analysis.aspx

  17. https://www.sophos.com/en-us/threat-center/threat-analyses/viruses-and-spyware/W32~Rbot-AKY/detailed-analysis.aspx

  18. https://www.sophos.com/en-us/threat-center/threat-analyses/viruses-and-spyware/W32~Sdbot-ACG/detailed-analysis.aspx

  19. Thing, V.L., Sloman, M., Dulay, N.: A survey of bots used for distributed denial of service attacks. In: IFIP International Information Security Conference, pp. 229–240. Springer, Boston, MA (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guntupalli Manoj Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Manoj Kumar, G., Vasudevan, A.R. (2019). D-SCAP: DDoS Attack Traffic Generation Using Scapy Framework. In: Peter, J., Alavi, A., Javadi, B. (eds) Advances in Big Data and Cloud Computing. Advances in Intelligent Systems and Computing, vol 750. Springer, Singapore. https://doi.org/10.1007/978-981-13-1882-5_19

Download citation

Publish with us

Policies and ethics