Input–Output Models of Industrial Plants

  • Raymond R. TanEmail author
  • Kathleen B. Aviso
  • Michael Angelo B. Promentilla
  • Krista Danielle S. Yu
  • Joost R. Santos
Part of the Lecture Notes in Management and Industrial Engineering book series (LNMIE)


Physical input–output models can be used to aid in the synthesis (design) or operations of industrial plant. In this chapter, the use of such models is illustrated for the case of polygeneration plants. The first example illustrates a zero degree of freedom synthesis problem. A second example illustrates how an input–output model can be used to identify process bottlenecks in existing plants. A third example discusses a mixed-integer linear programming (MILP) formulation of an input–output model to optimize state operations when the system is subjected to a disruptive event. LINGO code is provided for all examples.


Process synthesis Debottlenecking Abnormal operations Mixed-integer linear programming 


  1. 1.
    Albino V, Kuhtz S (2004) Enterprise input–output model for local sustainable development—the case of a tiles manufacturer in Italy. Resour Conserv Recycl 41:165–176CrossRefGoogle Scholar
  2. 2.
    Kasivisvanathan H, Barilea IDU, Ng DKS, Tan RR (2013) Optimal operational adjustment in multi-functional energy systems in response to process inoperability. Appl Energy 102:492–500CrossRefGoogle Scholar
  3. 3.
    Lenzen M, Lundie S (2012) Constructing enterprise input-output tables—a case study of New Zealand dairy products. J Econ Struct, 1, Article 6Google Scholar
  4. 4.
    Lin X, Polenske KR (1998) Input–output modeling of production processes for business management. Struct Change Econ Dyn 9:205–226CrossRefGoogle Scholar
  5. 5.
    Lupis CHP, McMichael FC (1999) Input–output microeconomic model for process and environmental analysis. In Proceedings of the TMS fall extraction and processing conference, vol 3, pp 1905–1918Google Scholar
  6. 6.
    Polenske KR, McMichael FC (2002) A Chinese cokemaking process-flow model for energy and environmental analyses. Energy Policy 30:865–883CrossRefGoogle Scholar
  7. 7.
    Quirk J, Olson M, Habib-Agahi H, Fox G (1989) Uncertainty and Leontief systems: an application to the selection of space station system designs. Manage Sci 35:585–596CrossRefGoogle Scholar
  8. 8.
    Sy CL, Aviso KB, Ubando AT, Tan RR (2018) Synthesis of cogeneration, trigeneration, and polygeneration systems using target-oriented robust optimization. In: De S, Bandyopadhyay S, Assadi M, Mukherjee DA (eds) Sustainable energy technology and policies., Springer, pp 155–171CrossRefGoogle Scholar
  9. 9.
    Tan RR, Lam HL, Kasivisvanathan H, Ng DKS, Foo DCY, Kamal M, Hallale N, Klemeš JJ (2012) An algebraic approach to identifying bottlenecks in linear process models of multifunctional energy systems. Theor Found Chem Eng 46:642–650CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Raymond R. Tan
    • 1
    Email author
  • Kathleen B. Aviso
    • 1
  • Michael Angelo B. Promentilla
    • 1
  • Krista Danielle S. Yu
    • 2
  • Joost R. Santos
    • 3
  1. 1.Chemical Engineering DepartmentDe La Salle UniversityManilaPhilippines
  2. 2.School of EconomicsDe La Salle UniversityManilaPhilippines
  3. 3.Department of Engineering Management and SystemsGeorge Washington UniversityWashingtonUSA

Personalised recommendations