Advertisement

Mathematical Foundations of Input–Output Models

  • Raymond R. TanEmail author
  • Kathleen B. Aviso
  • Michael Angelo B. Promentilla
  • Krista Danielle S. Yu
  • Joost R. Santos
Chapter
Part of the Lecture Notes in Management and Industrial Engineering book series (LNMIE)

Abstract

A detailed discussion of the mathematical foundations of input–output analysis is given in this chapter. The basic data format used in economic input–output models is discussed first, leading to the basic formulation and its solution using the matrix inversion approach. The use of the basic input–output model for key sector analysis is illustrated with the aid of an example. Applications of the input–output equations are depicted using spreadsheets, which provide an ideal foundation to understand the LINGO codes in subsequent chapters. Then, extensions involving mathematical programming, regional input–output models, and physical input–output models are considered; these variants are also illustrated with examples.

Keywords

Leontief inverse Key sector Optimization Mathematical programming Regional input–output model Physical input–output model 

References

  1. 1.
    Anderson CW, Santos JR, Haimes YY (2007) A risk-based input-output methodology for measuring the effects of the August 2003 Northeast Blackout. Econ Syst Res 19(2):183–204CrossRefGoogle Scholar
  2. 2.
    Bureau of Economic Analysis (2016) Input-output accounts data. Available at: https://www.bea.gov/industry/io_annual.htm. Accessed 4 Mar 2018
  3. 3.
    Cella G (1984) The input-output measurement of interindustry links. Oxford Bull Econ Stat 46(1):73–84CrossRefGoogle Scholar
  4. 4.
    Chenery HB, Watanabe T (1958) International comparisons of the structure of production. Econometrica 26(4):98–139CrossRefGoogle Scholar
  5. 5.
    Dietzenbacher (1992) The measurement of interindustry linkages: key sectors in the Netherlands. Econ Model 9(4):419–437Google Scholar
  6. 6.
    Dietzenbacher E, Lahr ML (2004) Wassily Leontief and input-output economics. Cambridge University Press, Cambridge, UKCrossRefGoogle Scholar
  7. 7.
    Intriligator MD (1971) Mathematical optimization and economic theory. Prentice-Hall Inc, Englewood Cliffs, NJzbMATHGoogle Scholar
  8. 8.
    Isard W (1960) Methods of regional analysis: an introduction to regional science. MIT Press, Cambridge, MAGoogle Scholar
  9. 9.
    Lahr ML, Dietzenbacher E (2001) Input-output analysis: frontiers and extensions. Palgrave, New York, NYGoogle Scholar
  10. 10.
    Leontief WW (1951) The structure of the American Economy, 1919–1939, 2nd edn. Oxford University Press, New York, NYGoogle Scholar
  11. 11.
    Leontief WW (1966) Input-output economics. Oxford University Press, New York, NYGoogle Scholar
  12. 12.
    Miller RE, Blair PD. (2009) Input-output analysis: foundations and extensions. Cambridge University PressGoogle Scholar
  13. 13.
    Rasmussen P (1956) Studies in intersectoral relations. North Holland, Amsterdam, The NetherlandsGoogle Scholar
  14. 14.
    Sonis M, Hewings GJD (1998) Temporal Leontief inverse. Macroecon Dyn 2(1):89–114MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Raymond R. Tan
    • 1
    Email author
  • Kathleen B. Aviso
    • 1
  • Michael Angelo B. Promentilla
    • 1
  • Krista Danielle S. Yu
    • 2
  • Joost R. Santos
    • 3
  1. 1.Chemical Engineering DepartmentDe La Salle UniversityManilaPhilippines
  2. 2.School of EconomicsDe La Salle UniversityManilaPhilippines
  3. 3.Department of Engineering Management and SystemsGeorge Washington UniversityWashingtonUSA

Personalised recommendations