Skip to main content

Response of Soil Properties and Soil Microbial Communities to the Projected Climate Change

  • Chapter
  • First Online:
Advances in Crop Environment Interaction

Abstract

With the advancement of human civilization, anthropogenic emission of greenhouse gases induces climate change. Science has made significant development in evaluating the direct and indirect impacts of climate change on the most important natural resource, the soil. The variable magnitude of emitted GHG fluxes between the soil and the atmosphere is primarily sourced from soil microbial activity that is mostly regulated by the existing soil environment. Certain soil properties, fertilizer nutrient management, and water management practices influence the magnitude of soil GHG fluxes. This chapter focuses on the impact of changing climatic variables on the dynamics of carbon and other major nutrients and micronutrients and deals with the effect of climate change on the processes that alter their cycling and availability. The changing environmental variables will most likely impact on nutrient transformation in soil and also alter its plant availability dynamics. The nutrients like C and N are controlled by biological cycles and may show a different reaction to the changing climatic variables than the elements with cycles controlled both by geological and biological processes, such as P, S, and K, or elements with predominantly geologically controlled cycles, such as K, Ca, Mg, S, or micronutrients. In this chapter, we also review how the soil microbial community and the extracellular enzymes are affected by alteration of the climate. The diversity and composition of the aboveground plant community influences the soil microbial community through the supply, timing, and composition of residues and exudates. There are many reports showing evidence that environmental modifications (increase in temperature, elevated carbon dioxide, drought, excess moisture, etc.) significantly impact the abundance, diversity, and activity of soil biota. Besides, we briefly focus on how greenhouse gas emissions are influenced by different soil characteristics. We have highlighted the global carbon pools and soil carbon pools. Actually, soil organic carbon (SOC) pool is 20.99 Pg up to 30 cm depth and 63.19 Pg up to 150 cm depth of soils in India, and the highest SOC pool was observed in aridisols followed by inceptisols and alfisols. Understanding the characteristics of these pools helps to apprehend the global climate change more clearly. Even with the paucity in availability of literature, we have also discussed the effect of environmental modifications/change on soil physical properties. With the current knowledge regarding climate change, the adaptation and mitigation of the climate change are also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi MK, Müller C (2011) Trace gas fluxes of CO2, CH4 and N2O in a permanent grassland soil exposed to elevated CO2 in the Giessen FACE study. Atmos Chem Phys 11:4199–4227

    Article  Google Scholar 

  • Al-Kaisi MM, Kruse ML, Sawyer JE (2008) Effect of nitrogen fertilizer application on growing season soil carbon dioxide emission in a corn–soybean rotation. J Environ Qual 37:325–332

    Article  CAS  PubMed  Google Scholar 

  • Allison SD (2005) Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments. Ecol Lett 8:626–635. https://doi.org/10.1111/j.14610248.2005.00756.x

    Article  Google Scholar 

  • Allison SD, Vitousek PM (2005) Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biol Biochem 37:937–944. https://doi.org/10.1016/j.soilbio.2004.09.014

    Article  CAS  Google Scholar 

  • Allison SD, Wallenstein MD, Bradford MA (2010) Soil-carbon response to warming dependent on microbial physiology. Nat Geosci 3:336–340

    Article  CAS  Google Scholar 

  • Amendolara T (2011–12) Soil microorganisms and global climate change. Verge 8, p 8. http://www.goucher.edu/Documents/verge/papers8/Soil Microorganisms And Global Climate Change.pdf

  • Anand S, Dahiya RP, Talyan V, Vrat P (2005) Investigations of methane emissions from rice cultivation in Indian context. Environ Int 31:469–482

    Article  CAS  PubMed  Google Scholar 

  • Arnone JA III, Bohlen PJ (1998) Stimulated N2O flux from intact grassland monoliths after two growing seasons under elevated atmospheric CO2. Oecologia 116:331–335

    Article  Google Scholar 

  • Askegaard M, Olesen JE, Kristensen K (2005) Nitrate leaching from organic arable crop rotations: effects of location, manure and catch crop. Soil Use Manage 21(2):181–188

    Article  Google Scholar 

  • Baggs EM, Rees RM, Smith KA, Vinten AJA (2000) Nitrous oxide emission from soils after incorporating crop residues. Soil Use Manage 16(2):82–87

    Article  Google Scholar 

  • Balser TC, Gutknecht JLM, Liang C (2010) How will climate change impact soil microbial communities? In: Dixon GR, Tilston E (eds) Soil microbiology and sustainable crop. University of Reading Press, Reading, pp 373–397

    Chapter  Google Scholar 

  • Bandyopadhyay KK (2012) Carbon sequestration: global and Indian scenario. In: Singh AK, Ngachan SV, Munda GC, Mohapatra KP, Choudhury BU, Das A, Rao CS, Patel DP, Rajkhowa DJ, Ramkrushna GI, Panwar AS (eds) Carbon management in agriculture for mitigating Greenhouse Effect. ICAR Research Complex for NEH Region, Umiam, Meghalaya, India, pp 27–42

    Google Scholar 

  • Bardgett RD, Kandeler E, Tscherko D, Hobbs PJ, Bezemer TM, Jones TH, Thompson LJ (1999) Below-ground microbial community development in a high temperature world. Oikos 85(2):193–203

    Article  Google Scholar 

  • Bauer J, Kirschbaum MUF, Weihermüller L, Huisman JA, Herbst M, Vereecken H (2008) Temperature response of wheat decomposition is more complex than the common approaches of most multi-pool models. Soil Biol Biochem 40:2780–2786

    Article  CAS  Google Scholar 

  • Beier C, Emmett BA, Penuelas J et al (2008) Carbon and nitrogen cycles in European ecosystems respond differently to global warming. Sci Total Environ 407:692–697

    Article  CAS  PubMed  Google Scholar 

  • Bell TH, Klironomos JN, Henry HAL (2010) Seasonal responses of extracellular enzyme activity and microbial to warming and nitrogen addition. Soil Sci Soc Am J 74:820–828

    Article  CAS  Google Scholar 

  • Berglund Ö, Berglund K (2011) Influence of water table level and soil properties on emissions of greenhouse gases from cultivated peat soil. Soil Biol Biochem 43(5):923–931

    Article  CAS  Google Scholar 

  • Bever JD, Platt TG, Morton ER (2012) Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annu Rev Microbiol 66:265–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhaduri D, Mandal A, Chakraborty K, Chatterjee D, Dey R (2017) Interlinked chemical-biological processes in anoxic waterlogged soil-a review. Indian J Agr Sci 87(12):1587–1599

    Google Scholar 

  • Bhatia A, Ghosh A, Kumar V, Tomer R, Singh SD, Pathak H (2011) Effect of elevated tropospheric ozone on methane and nitrous oxide emission from rice soil in North India. Agric Ecosyst Environ 144:21–28

    Article  CAS  Google Scholar 

  • Bhattacharyya P, Manna MC (2014) Soil organic pools and climate change feedback. In: Shahid M, Bhattacharyya P, Nayak AK (eds) Advanced techniques for assessment of soil health, GHG emissions and carbon sequestration in rice under changing climatic scenario and mitigation strategies. Compendium from winter school. Crop Production Division, CRRI, Cuttack, Odisha, India, 11th November to 1st December, 2014, pp 41–46

    Google Scholar 

  • Bhattacharyya P, Roy KS, Neogi S, Dash PK, Nayak AK, Mohanty S, Baig MJ, Sarkar RK, Rao KS (2013a) Impact of elevated CO2 and temperature on soil C and N dynamics in relation to CH4 and N2O emissions from tropical flooded rice (Oryza sativa L.). Sci Total Environ 461–462:601–611. https://doi.org/10.1016/j.scitotenv.2013.05.035

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya P, Roy KS, Neogi S, Manna MC, Adhya TK, Rao KS, Nayak AK (2013b) Influence of elevated carbon dioxide and temperature on belowground carbon allocation and enzyme activities in tropical flooded soil planted with rice. Environ Monit Assess 185:8659–8671. https://doi.org/10.1007/s10661-013-3202-7

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyyaa P, Roy KS, Dash PK, Neogi S, Shahid M, Nayak AK, Raja R, Karthikeyan S, Balachandar D, Rao KS (2014) Effect of elevated carbon dioxide and temperature on phosphorus uptake in tropical flooded rice (Oryza sativa L.). Eur J Agron 53:28–37

    Article  CAS  Google Scholar 

  • Bijay-Singh, Ryden JC, Whitchead DC (1988) Some relationships between denitrification potential and fractions of organic carbon in air-dried and field-moist soils. Soil Biol Biochem 20(5):737–741

    Article  Google Scholar 

  • Blagodatskaya E, Kuzyakov Y (2008) Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biol Fertil Soils 45:115–131

    Article  Google Scholar 

  • Bontti EA, Decant JP, Munson SM, Gathany MA, Przeszlowska A, Haddix ML, Owens S, Burke IC, Parton WJ, Harmon ME (2009) Litter decomposition in grasslands of Central North America (US Great Plains). Glob Chang Biol 15:1356–1363

    Article  Google Scholar 

  • Bouma J, Kai LN, David ME, Jonathan PL (1997) Estimating respiration of roots in soil: interactions with soil CO2, soil temperature and soil water content. Plant Soil 195:221–232

    Article  CAS  Google Scholar 

  • Bradford MA (2013) Thermal adaptation of decomposer communities in warming soils. Front Microbiol 4:333. https://doi.org/10.3389/fmicb.2013.00333

    Article  PubMed  PubMed Central  Google Scholar 

  • Brooks D, Chan R, Starks E, Grayston S, Jones M (2011) Ectomycorrhizal hyphae structure components of the soil bacterial community for decreased phosphatase production. FEMS Microbiol Ecol 76:245–255. https://doi.org/10.1111/j.15746941.2011.01060.x

    Article  CAS  PubMed  Google Scholar 

  • Butenschoen O, Scheu S, Eisenhauer N (2011) Interactive effects of warming, soil humidity and plant diversity on litter decomposition and microbial activity. Soil Biol Biochem 43:1902–1907

    Article  CAS  Google Scholar 

  • Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S (2013) Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philos Trans R Soc B 368:20130122

    Article  CAS  Google Scholar 

  • Calfapietra C, De Angelis P, Gielen B et al (2007) Increased nitrogen use efficiency of a short-rotation poplar plantation in elevated CO2 concentration. Tree Physiol 27:1153–1163

    Article  CAS  PubMed  Google Scholar 

  • Carpenter-Boggs L, Pikul JL Jr, Vigil MF, Riedell WE (2000) Soil nitrogen mineralization influenced by crop rotation fertilization. Soil Sci Soc Am J 64:2038–2045

    Article  CAS  Google Scholar 

  • Carter MS, Ambus P, Albert KR, Larsen KS, Andersson M, Priemé A, van der Linden L, Beier C (2011) Effects of elevated atmospheric CO2, prolonged summer drought and temperature increase on N2O and CH4 fluxes in a temperate heathland. Soil Biol Biochem 43:1660–1670

    Article  CAS  Google Scholar 

  • Cassman KG, Dobermann A, Walters DT, Haishun Y (2003) Meeting cereal demand while protecting natural resources and improving environmental quality. Annu Rev Environ Resour 28:315–358

    Article  Google Scholar 

  • Castro HF, Classen AT, Austin EE, Norby RJ, Schadt CW (2010) Soil microbial community responses to multiple experimental climate change drivers. Appl Environ Microbiol 76:999–1007. https://doi.org/10.1128/AEM.02874-09

    Article  CAS  PubMed  Google Scholar 

  • Chadwick DR, Pain BF, Brookman SKE (2000) Nitrous oxide and methane emissions following application of animal manures to grassland. J Environ Qual 29(1):277–287

    Article  CAS  Google Scholar 

  • Chakrabarti B, Jain N, Bhatia A, Gupta SK, Pathak H (2012) Impact of climate change on soil fertility. In: Pathak H, Aggarwal PK, Singh SD (eds) Climate change impact, adaptation and mitigation in agriculture: methodology for assessment and applications. Indian Agricultural Research Institute, New Delhi, pp 105–110

    Google Scholar 

  • Chatterjee D, Saha S (2015) Climate change and agriculture: a multidimensional perspective. In: Chatterjee D, Sangma CBK, Kikon ZJ, Ray SK, Chowdhury P, Bordoloi LJ, Deka BC (eds) Resource conservation technologies in the context of climate change. ICAR Research Complex for NEH Region, Nagaland Centre, Jharnapani, Medziphema, pp 1–8

    Google Scholar 

  • Chatterjee D, Datta SC, Manjaiah KM (2013) Clay carbon pools and their relationship with short-range order minerals: avenues to mitigate climate change? Curr Sci 25:1404–1410

    Google Scholar 

  • Chatterjee D, Datta SC, Manjaiah KM (2014) Fractions, uptake and fixation capacity of phosphorus and potassium in three contrasting soil orders. J Soil Sci Plant Nutr 14(3):640–656

    CAS  Google Scholar 

  • Chatterjee D, Datta SC, Manjaiah KM (2015) Effect of citric acid treatment on release of phosphorus, aluminium and iron from three dissimilar soils of India. Arch Agron Soil Sci 61(1):105–117

    Article  CAS  Google Scholar 

  • Chatterjee D, Mohanty S, Guru PK, Swain CK, Tripathi R, Shahid M, Kumar U, Kumar A, Bhattacharyya P, Gautam P, Lal B (2018a) Comparative assessment of urea briquette applicators on greenhouse gas emission, nitrogen loss and soil enzymatic activities in tropical lowland rice. Agric Ecosyst Environ 252:178–190

    Article  CAS  Google Scholar 

  • Chatterjee D, Tripathi R, Chatterjee S, Debnath M, Shahid M, Bhattacharyya P, Swain CK, Tripathy R, Bhattacharya BK, Nayak AK (2018b) Characterization of land surface energy fluxes in a tropical lowland rice paddy. Theor Appl Climatol:1–12. https://doi.org/10.1007/s00704-018-2472-y

  • Chirinda N, Carter MS, Albert KR, Ambus P, Olesen JE, Porter JR, Petersen SO (2010) Emissions of nitrous oxide from arable organic and conventional cropping systems on two soil types. Agric Ecosyst Environ 136(3–4):199–208

    Article  CAS  Google Scholar 

  • Conrad R (1989) Control of methane production in terrestrial ecosystems. In: Andreae MO, Schimel DS (eds) Exchange of trace gases between terrestrial ecosystems and the atmosphere. Wiley, Chichester, pp 39–58

    Google Scholar 

  • Conrad R, Rothfuss F (1991) Methane oxidation in the soil surface layer of a flooded rice field and the effect of ammonium. Biol Fertil Soils 12(1):28–32

    Article  CAS  Google Scholar 

  • Contreras-Ramos SM, lvarez-Bernal DA, Montes-Molina JA, Cleemput OV, Dendooven L (2009) Emission of nitrous oxide from hydrocarbon contaminated soil amended with waste water sludge and earthworms. Appl Soil Ecol 41(1):69–76

    Article  Google Scholar 

  • Corsi S, Friedrich T, Kassam A, Pisante M, Sà JDM (2012) Soil organic carbon accumulation and greenhouse gas emission reductions from conservation agriculture: a literature review. In: Integrated crop management, vol. 16. Plant Production and Protection Division, Food and Agriculture Organization, United Nations, p 89

    Google Scholar 

  • Crutzen PJ, Ehhalt DH (1977) Effects of nitrogen fertilizers and combustion on the stratospheric ozone layer. Ambio 6(2/3):112–117

    CAS  Google Scholar 

  • Dalal RC, Wang W, Robertson GP, Parton WJ (2003) Nitrous oxide emission from Australian agricultural lands and mitigation options: a review. Aust J Soil Res 41(2):165–195

    Article  CAS  Google Scholar 

  • Darby BJ, Neher DA, Housman DC, Belnap J (2011) Few apparent short-term effects of elevated soil temperature and increased frequency of summer precipitation on the abundance and taxonomic diversity of desert soil micro- and meso-fauna. Soil Biol Biochem 43:1474–1481. https://doi.org/10.1016/j.soilbio.2011.03.020

    Article  CAS  Google Scholar 

  • Davidson EA, Verchot LV (2000) Testing the hole-in-the-pipe model of nitric and nitrous oxide emissions from soils using the TRAGNET database. Glob Biogeochem Cycles 14(4):1035–1043

    Article  CAS  Google Scholar 

  • De Boer W, Kowalchuk GA (2001) Nitrification in acid soils: microorganisms and mechanisms. Soil Biol Biochem 33(7–8):853–866

    Article  Google Scholar 

  • de Vries FT, Liiri ME, Bjørnlund L, Bowker MA, Christensen S, Setälä HM, Bardgett RD (2012) Land use alters the resistance and resilience of soil food webs to drought. Nat Clim Chang 2:276–280

    Google Scholar 

  • de Vries FT, Bardgett RD (2014) Climate change effects on soil biota in the UK. Biodiversity Report Card 2014–15, The University of Manchester, Manchester, UK. http://www.manchester.ac.uk/research

  • Delaire M, Frak E, Sigogne M, Adam B, Beaujard F, Le Roux X (2005) Sudden increase in atmospheric CO2 concentration reveals strong coupling between shoot carbon uptake and root nutrient uptake in young walnut trees. Tree Physiol 25:229–235

    Article  CAS  PubMed  Google Scholar 

  • Delgado JA, Dillon MA, Sparks RT, Essah SYC (2007) A decade of advances in cover crops. J Soil Water Conserv 62(5):110A–117A

    Google Scholar 

  • Dijkstra FA, Breemen NV, Jongmans AG, Davies GR, Likens GE (2003) Calcium weathering in forested soils and the effect of different tree species. Biogeochemistry 62:253–275

    Article  CAS  Google Scholar 

  • Ding WX, Cai Y, Cai ZC, Yagi K, Zheng XH (2007) Nitrous oxide emissions from an intensively cultivated maize wheat rotation soil in the North China plain. Sci Total Environ 373(2–3):501–511

    Article  CAS  PubMed  Google Scholar 

  • Doran JW, Mielke LN, Powe JF (1990) Microbial activity as regulated by soil water filled pore space. In: Transactions of the 14th International Congress on soil science, vol 3, pp 94–99

    Google Scholar 

  • Dorodnikov M, Blagodatskaya E, Blagodatsky S, Marhan S, Fangmeier A, Kuzyakov Y (2009) Stimulation of microbial extracellular enzyme activities by elevated CO2 depends on soil aggregate size. Glob Chang Biol 15:1603–1614

    Article  Google Scholar 

  • Drake HL, Horn MA (2006) Earthworms as a transient heaven for terrestrial denitrifying microbes: a review. Eng Life Sci 6(3):261–265

    Article  CAS  Google Scholar 

  • Drewitt GB, Black TA, Nesic Z, Humphreys ER, Jork EM, Swanson R, Ethier GJ, Griffis T, Morgenstern K (2002) Measuring forest floor CO2 fluxes in a Douglas-fir forest. Agric For Meteorol 110:299–317

    Article  Google Scholar 

  • Drigo B, Kowalchuk GA, van Veen JA (2008) Climate change goes underground: effects of elevated atmospheric CO2 on microbial community structure and activities in the rhizosphere. Biol Fertil Soils 44:667–679. https://doi.org/10.1007/s00374-008-0277-3

    Article  Google Scholar 

  • Drissner D, Blum H, Tscherko D, Kandeler E (2007) Nine years of enriched CO2 changes the function and structural diversity of soil microorganisms in a grassland. Eur J Soil Sci 58:260–269

    Article  Google Scholar 

  • Dunbar J, Eichorst SA, Gallegos-Graves L, Silva S, Xie G, Hengartner NW, Evans RD, Hungate BA, Jackson RB, Megonigal JP, Schadt CW, Vilgalys R, Zak DR, Kuske CR (2012) Common bacterial responses in six ecosystems exposed to 10 years of elevated atmospheric carbon dioxide. Environ Microbiol 14:1145–1158

    Article  CAS  PubMed  Google Scholar 

  • Dungait JAJ, Hopkins DW, Gregory AS, Whitmore AP (2012) Soil organic matter is governed by accessibility not recalcitrance. Glob Chang Biol 18:1781–1796

    Article  Google Scholar 

  • EIA (2008) Emissions of greenhouse gases in the United States 2008. www.eia.gov/oiaf/1605/ggrpt/pdf/0573(2008).pdf

  • Ellsworth D, Reich P, Naumburg E, Koch G, Kubiske M, Smith S (2004) Photosynthesis, carboxylation and leaf nitrogen responses of 16 species to elevated pCO2 across four free-air CO2 enrichment experiments in forest, grassland and desert. Glob Chang Biol 10:2121–2138

    Article  Google Scholar 

  • Evans SE, Wallenstein MD (2012) Soil microbial community response to drying and rewetting stress: does historical precipitation regime matter? Biogeochemistry 109:101–116

    Article  Google Scholar 

  • Eviner VT, Chapin FS (2002) The influence of plant species, fertilization and elevated CO2 on soil aggregate stability. Plant Soil 246:211

    Article  CAS  Google Scholar 

  • Fang C, Moncrieff JB (2001) The dependence of soil CO2 efflux on temperature. Soil Biol Biochem 33:155–165

    Article  CAS  Google Scholar 

  • Fansler SJ, Smith JL, Bolton H, Baily VL (2005) Distribution of two C cycle enzymes in soil aggregates of a prairie. Biol Fertil Soils 42:17–23

    Article  CAS  Google Scholar 

  • Fay P, Jin V, Way D, Potter K, Gill R, Jackson R, Polley H (2012) Soil-mediated effects of subambient to increased carbon dioxide on grassland productivity. Nat Clim Chang 2:742–746. https://doi.org/10.1038/nclimate1573

    Article  CAS  Google Scholar 

  • Feyereisen GW, Wilson BN, Sands GR, Strock JS, Porter PM (2006) Potential for a rye cover crop to reduce nitrate loss in south western Minnesota. Agron J 98(6):1416–1426

    Article  CAS  Google Scholar 

  • Firestone MK, Firestone RB, Tiedje JM (1980) Nitrous oxide from soil denitrification: factors controlling its biological production. Science 208(4445):749–751

    Article  CAS  PubMed  Google Scholar 

  • Focht DD, Verstraete W (1977) Biochemical ecology of nitrification and denitrification. In: Alexander M (ed) Advances in microbial ecology. Plenum Press, New York, pp 135–214

    Google Scholar 

  • French S, Levy-Booth D, Samarajeewa A, Shannon KE, Smith J, Trevors JT (2009) Elevated temperatures and carbon dioxide concentrations: effects on selected microbial activities in temperate agricultural soils. World J Microbiol Biotechnol 25:1887–1900. https://doi.org/10.1007/s11274-009-0107-2

    Article  CAS  Google Scholar 

  • Fuhrmann JF (2005) Microbial metabolism. In: Sylvia DM, Hartel PG, Fuhrmann JJ, Zuberer DA (eds) Principles and applications of soil microbiology, 2nd edn. Pearson Prentice Hall, pp 54–83

    Google Scholar 

  • García-Marco DM, Ravella SR, Chadwick D, Vallejo A, Gregory AS, Cárdenas LM (2014) Ranking factors affecting emissions of GHG from incubated agricultural soils. Eur J Soil Sci 65:573–583

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    Article  CAS  PubMed  Google Scholar 

  • Grieve IC (2001) Human impacts on soil properties and their implications for the sensitivity of soil systems in Scotland. Catena 42:361–374

    Article  CAS  Google Scholar 

  • Groffman PM, Gold AJ, Kellogg DQ, Addy K (2002) Nitrous oxide emissions derived from N leaching. In: Petersen SO, Olesen JE (eds) DIAS report, Plant production no. 81. Greenhouse gas inventories for agriculture in the Nordic countries. Danish Ministry of Food, Agriculture and Fisheries, pp 143–155

    Google Scholar 

  • Guenet B, Lenhart K, Leloup J, Giusti-Miller S, Pouteau V, Mora P, Nunan N, Abbadie L (2012) The impact of long-term CO2 enrichment and moisture levels on soil microbial community structure and enzyme activities. Geoderma 170:331–336

    Article  CAS  Google Scholar 

  • Hayatsu M, Tago K, Saito M (2008) Various players in the nitrogen cycle: diversity and functions of the microorganisms involved in nitrification and denitrification. Soil Sci Plant Nutr 54(1):33–45

    Article  CAS  Google Scholar 

  • Henault C, Devis X, Page S, Justes E, Reau R, Germon JC (1998) Nitrous oxide emissions under different soil and land management conditions. Biol Fertil Soils 26(3):199–207

    Article  CAS  Google Scholar 

  • Henry HAL (2012) Soil extracellular enzyme dynamics in a changing climate. Soil Biol Biochem 47:53–59

    Article  CAS  Google Scholar 

  • Heywood VH, Watson RT (eds) (1995) Global biodiversity assessment. UNEP, Cambridge University Press, Cambridge

    Google Scholar 

  • Hodge A, Robinson D, Fitter A (2000) Are microorganisms more effective than plants at competing for nitrogen? Trends Plant Sci 5:304–308

    Article  CAS  PubMed  Google Scholar 

  • Hou X, Chen GX, Wang ZP, Van Cleemput O, Patrick WH (1998) Methane and nitrous oxide emissions from a rice field in relation to soil redox and microbiological processes. Soil Sci Soc Am J 64(6):2180–2186

    Article  CAS  Google Scholar 

  • Howden M, Soussana JF, Tubiello FN (2007) Adaptation strategies for climate change. Proc Natl Acad Sci 104:19691–19698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu S, Chapin FS, Firestone MK, Field CB, Chiariello NR (2001) Nitrogen limitation of microbial decomposition in a grassland under elevated CO2. Nature 409:188–191

    Article  CAS  PubMed  Google Scholar 

  • Hulme M, Jenkins GJ (1998) Climate change scenarios for the U.K.: scientific report. UKCIP technical report no. l. Climate Research Unit, Norwich

    Google Scholar 

  • Insam H (1990) Are the soil microbial biomass and basal respiration governed by the climatic regime? Soil Biol Biochem 22:525–532

    Article  Google Scholar 

  • Inubushi K, Barahona MA, Yamakawa K (1999) Effects of salts and moisture content on N2O emission and nitrogen dynamics in yellow soil and Andosol in model experiments. Biol Fertil Soils 29(4):401–407

    Article  CAS  Google Scholar 

  • IPCC (2007a) Climate Change 2007: the physical science basis, contribution of working group I to the Fourth Assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2007b) Climate change 2007: synthesis report. Available at http://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_synthesis_report.htm

  • Jacinthe P, Lal R (2003) Nitrogen fertilization of wheat residues affecting nitrous oxide and methane emission from a Central Ohio Luvisol. Biol Fertil Soils 37(6):338–347

    CAS  Google Scholar 

  • Jastrow JD, Miller RM, Matamala R, Norby RJ, Boutton TW, Rice CW, Owensby CE (2005) Elevated atmospheric CO2 increases soil carbon. Glob Chang Biol 11:2057–2064

    Article  PubMed  Google Scholar 

  • Jenkinson DJ, Raynor JH (1977) The turnover of soil organicmatter in some of the Rothamsted classical experiments. Soil Sci 123:298–305

    Article  CAS  Google Scholar 

  • Jensen BB, Burris RH (1986) N2O as a substrate and as a competitive inhibitor of nitrogenase. Biochemistry 25(5):1083–1088

    Article  CAS  PubMed  Google Scholar 

  • Jha P, Biswas AK, Rao AS (2012) Carbon sequestration in agricultural soils: Evolving concepts, issues and strategies. In: Singh AK, Ngachan SV, Munda GC, Mohapatra KP, Choudhury BU, Das A, Rao CS, Patel DP, Rajkhowa DJ, Ramkrushna GI, Panwar AS (eds) Carbon management in agriculture for mitigating greenhouse effect. ICAR Research Complex for NEH Region, Umiam, Meghalaya, India, pp 17–26

    Google Scholar 

  • Johnson NC, Gehring CA (2007) Mycorrhizas: symbiotic mediators of rhizosphere and ecosystem processes. In: Cardon ZG, Whitbeck JL (eds) The rhizosphere: an ecological perspective. Elsevier Academic Press, London, pp 31–56

    Google Scholar 

  • Kalbitz K, Solinger S, Park J-H, Michalzik B, Matzner E (2000) Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci 165:277–304

    Article  CAS  Google Scholar 

  • Kant PCB, Bhadraray S, Purakayastha TJ, Jain V, Pal M, Datta SC (2007) Active carbon-pools in rhizosphere of wheat (Triticum aestivum L.) grown under elevated atmospheric carbon dioxide concentration in a Typic Haplustept in sub-tropical India. Environ Pollut 147:273–281

    Article  CAS  PubMed  Google Scholar 

  • Kappelle M, van Vuuren MMI, Baas P (1999) Effects of climate change on biodiversity: a review and identification of key research issues. Biodivers Conserv 8:1383–1397

    Article  Google Scholar 

  • Kardol P, Cornips NJ, van Kempen MML, Bakx-Schotman JMT, van der Putten WH (2007) Microbe-mediated plant-soil feedback causes historical contingency effects in plant community assembly. Ecol Monogr 77:147–162

    Article  Google Scholar 

  • Kelley A, Fay P, Polley H, Gill R, Jackson R (2011) Atmospheric CO2 and soil extracellular enzyme activity: a meta-analysis and CO2 gradient experiment. Ecosphere 2(8):96. https://doi.org/10.1890/ES11-00117.1

    Article  Google Scholar 

  • Kim HY, Lieffering M, Miura S, Kobayashi K, Okada M (2001) Growth and nitrogen uptake of CO2-enriched rice under field conditions. New Phytol 150:223–229

    Article  CAS  Google Scholar 

  • Kim YS, Imori M, Watanabe M, Hatano R, Yi MJ, Koike T (2012) Simulated nitrogen inputs influence methane and nitrous oxide fluxes from a young larch plantation in northern Japan. Atmos Environ 46:36–44

    Article  CAS  Google Scholar 

  • Koch O, Tscherko D, Kandeler E (2007) Temperature sensitivity of microbial respiration, nitrogen mineralization, and potential soil enzyme activities in organic alpine soils. Glob Biogeochem Cycles 21:GB4017

    Article  CAS  Google Scholar 

  • Kool DM, Wrage N, Zechmeister-Boltenstern S, Pfeffer M, Brus D, Oenema O, Van Groenigen J-W (2010) Nitrifier denitrification can be a source of N2O from soil: a revised approach to the dual isotope labelling method. Eur J Soil Sci 61:759–772

    Article  CAS  Google Scholar 

  • Kou TJ, Wang LR, Zhu JG, Xie ZB, Wang YL (2014) Ozone pollution influences soil carbon and nitrogen sequestration and aggregate composition in paddy soils. Plant Soil 380:305–313

    Article  CAS  Google Scholar 

  • Kowalenko CG, Ivarson KC (1978) Effect of moisture content, temperature and nitrogen fertilization on carbon dioxide evolution from field soils. Soil Biol Biochem 10:417–423

    Article  CAS  Google Scholar 

  • Krausea K, Niklausc PA, Schleppia P (2013) Soil-atmosphere fluxes of the greenhouse gases CO2, CH4 and N2O in a mountain spruce forest subjected to long term N addition and to tree girdling. Agric For Meteorol 181:61–68

    Article  Google Scholar 

  • Krüger M, Eller G, Conrad R, Frenzel P (2002) Seasonal variation in pathways of CH4 production and in CH4 oxidation in rice fields determined by stable carbon isotopes and specific inhibitors. Glob Chang Biol 8:265–280

    Article  Google Scholar 

  • Kumar M, Swarup A, Patra AK, Purakayastha TJ, Manjaiah KM, Rakshit R (2011) Elevated CO2 and temperature effects on phosphorus dynamics in rhizosphere of wheat (Triticum aestivum L.) grown in a Typic Haplustept of subtropical India. Agrochimica 55:14–31

    Google Scholar 

  • Kumar M, Swarup A, Patra AK, Chandrakala JU, Manjaiah KM (2012) Effect of elevated CO2 and temperature on phosphorus efficiency of wheat grown in an Inceptisol of subtropical India. Plant Soil Environ 58:230–235

    Article  Google Scholar 

  • Kuzyakov Y (2006) Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol Biochem 38:425–448

    Article  CAS  Google Scholar 

  • Laegried M, Aastveit AH (2002) Nitrous oxide emissions from field-applied fertilizers. In: Petersen SO, Olesen JE (eds) DIAS report, Plant production no. 81, October 2002. Greenhouse Gas inventories for agriculture in the Nordic countries. Danish Ministry of Food, Agriculture and Fisheries, pp 122–134

    Google Scholar 

  • Lagomarsino A, Moscatelli MC, Hoosbeek MR, Angelis PD, Grego S (2008) Assessment of soil nitrogen and phosphorous availability under elevated CO2 and N-fertilization in a short rotation poplar plantation. Plant Soil 308:131–147

    Article  CAS  Google Scholar 

  • Lal R (2004) Soil carbon sequestration in India. Clim Chang 65:277–296

    Article  CAS  Google Scholar 

  • Lal R (2008) Sequestration of atmospheric CO2 in global carbon pools. Energy Environ Sci 1:86–100. https://doi.org/10.1039/B809492F

    Article  CAS  Google Scholar 

  • Le Mer J, Roger P (2001) Production, oxidation, emission and consumption of methane by soils: a review. Eur J Soil Biol 37:25–50

    Article  Google Scholar 

  • Lee J, Hopmans JW, van Kessel C, King AP, Jeannie Evatt K, Louie D, Rolston DE, Six J (2009) Tillage and seasonal emissions of CO2, N2O and NO across a seed bed and at the field scale in a Mediterranean climate. Agric Ecosyst Environ 129:378–390

    Article  CAS  Google Scholar 

  • Leifeld J, Fuhrer J (2005) The temperature response of CO2 production from bulk soils and soil fractions is related to soil organic matter quality. Biogeochemistry 75:433–453

    Article  CAS  Google Scholar 

  • Lesschen JP, Velthof GL, de Vries W, Kros J (2011) Differentiation of nitrous oxide emission factors for agricultural soils. Environ Pollut 159(11):3215–3222

    Article  CAS  PubMed  Google Scholar 

  • Li XZ, Sarah P (2003a) Arylsulfatase activity of soil microbial biomass along a Mediterranean-arid transect. Soil Biol Biochem 35:925–934

    Article  CAS  Google Scholar 

  • Li XZ, Sarah P (2003b) Enzyme activities along a climatic transect in the Judean Desert. Catena 53:349–363

    Article  CAS  Google Scholar 

  • Lindberg N (2003) Soil fauna and global change: responses to experimental drought, irrigation, fertilisation and soil warming. A doctoral thesis submitted to Department of Ecology and Environmental Research, Swedish University of Agricultural Sciences, Uppsala

    Google Scholar 

  • Lipson DA, Blair M, Barron-Gafford G, Grieve K, Murthy R (2006) Relationships between microbial community structure and soil processes under elevated atmospheric carbon dioxide. Microb Ecol 51:302–314

    Article  PubMed  Google Scholar 

  • Lipson DA, Kuske CR, Gallegos-Graves LV, Oechel WC (2014) Elevated atmospheric CO2 stimulates soil fungal diversity through increased fine root production in a semiarid shrubland ecosystem. Glob Chang Biol 20:2555–2565

    Article  PubMed  Google Scholar 

  • Liu LL, King JS, Giardina CP (2007) Effects of elevated atmospheric CO2 and tropospheric O3 on nutrient dynamics: decomposition of leaf litter in trembling aspen and paper birch communities. Plant Soil 299:65–82

    Article  CAS  Google Scholar 

  • Livesley SJ, Grover S, Hutley LB, Jamali H, Butterbach-Bahld K, Fest B, Beringer J, Arndt SK (2011) Seasonal variation and fire effects on CH4, N2O and CO2 exchange in savanna soils of northern Australia. Agric For Meteorol 151(11):1440–1452

    Article  Google Scholar 

  • Lloyd D, Thomas KL, Benstead J, Davies KL, Lloyd SH, Arah JRM, Stephen KD (1998) Methanogenesis and CO2 exchange in an ombrotrophic peat bog. Atmos Environ 32:3229–3238

    Article  CAS  Google Scholar 

  • Lobe I, Amelung A, Du Preez CC (2001) Losses of carbon and nitrogen with prolonged arable cropping from sandy soils of the south African Highveld. Eur J Soil Sci 52(1):93–101

    Article  Google Scholar 

  • Low AP, Stark JM, Dudley LM (1997) Effects of soil osmotic potential on nitrification, ammonification, N-assimilation, and nitrous oxide production. Soil Sci 162(1):16–27

    Article  CAS  Google Scholar 

  • Lukac M, Calfapietra C, Lagomarsino A, Loreto F (2010) Global climate change and tree nutrition: effects of elevated CO2 and temperature. Tree Physiol 30:1209–1220. https://doi.org/10.1093/treephys/tpq040

    Article  CAS  PubMed  Google Scholar 

  • Ma ED, Zhang GB, Ma J, Xu H, Cai ZC, Yagi K (2010) Effects of rice straw returning methods on N2O emission during wheat-growing season. Nutr Cycl Agroecosyst 88(3):463–469

    Article  CAS  Google Scholar 

  • Maag M, Vinther FP (1996) Nitrous oxide emissions by nitrification and denitrification in different soil types and at different soil moisture contents and temperatures. Appl Soil Ecol 4(1):5–14

    Article  Google Scholar 

  • Majumdar D (2003) Methane and nitrous oxide emission from irrigated rice fields: proposed mitigation strategies. Curr Sci 84(10):1317–1327

    CAS  Google Scholar 

  • Majumdar D, Pathak H, Kumar S, Jain MC (2002) Nitrous oxide emission from a sandy loam Inceptisol under irrigated wheat in India as influenced by different nitrification inhibitors. Agric Ecosyst Environ 91(1–3):283–293

    Article  CAS  Google Scholar 

  • Mandal A, Neenu S (2012) Impact of climate change on soil biodiversity- a review. Agric Rev 33:283–292

    Google Scholar 

  • Manna MC, Swarup A, Wanjari RH, Ravankar HN, Mishra B, Saha MN et al (2005) Long-term effect of fertilizer and manure application on soil organic carbon storage, soil quality and yield sustainability under sub-humid and semi-arid tropical India. Field Crops Res 93:264–280

    Article  Google Scholar 

  • Manna S, Singh N, Singh VP (2013) Effect of elevated CO2 on degradation of azoxystrobin and soil microbial activity in rice soil. Environ Monit Assess 185:2951–2960. https://doi.org/10.1007/s10661-012-2763-1

    Article  CAS  PubMed  Google Scholar 

  • Marilley L, Hartwig UA, Aragno M (1999) Influence of an elevated atmospheric CO2 content on soil and rhizosphere bacterial communities beneath Lolium perenne and Trifolium repens under field conditions. Microb Ecol 38:39–49

    Article  CAS  PubMed  Google Scholar 

  • Masscheleyn PH, DeLaune RD, Patrick WH Jr (1993) Methane and nitrous oxide emissions from laboratory measurements of rice soil suspension: effect of soil oxidation-reduction status. Chemosphere 26(1–4):251–260

    Article  CAS  Google Scholar 

  • Mathieu O, Hénault C, Lévêque J, Baujard E, Milloux M-J, Andreux F (2006) Quantifying the contribution of nitrification and denitrification to the nitrous oxide flux using 15N tracers. Environ Pollut 144:933–940

    Article  CAS  PubMed  Google Scholar 

  • Matthies C, Griesshammer A, Schmittroth M, Drake HL (1999) Evidence for involvement of gut-associated denitrifying bacteria in emission of nitrous oxide (N2O) by earthworms obtained from garden and forest soils. Appl Environ Microbiol 65(8):3599–3604

    CAS  PubMed  PubMed Central  Google Scholar 

  • Menyailo OV, Stepanov AL, Umarov MM (1997) The transformation of nitrous oxide by denitrifying bacteria in Solonchaks. Pochvovedenie 30(2):213–215

    Google Scholar 

  • Millar N, Baggs EM (2005) Relationships between N2O emissions and water soluble C and N contents of agroforestry residues after their addition to soil. Soil Biol Biochem 37(3):605–608

    Article  CAS  Google Scholar 

  • Millar N, Ndufa JK, Cadisch G, Baggs EM (2004) Nitrous oxide emissions following incorporation of improved-fallow residues in the humid tropics. Glob Biogeochem Cycles 18(1):GB1032

    Article  CAS  Google Scholar 

  • Montealegre CM, Van Kessel C, Blumenthal JM, Hur H-G, Hartwig UA, Sadowsky MJ (2000) Elevated atmospheric CO2 alters microbial population structure in a pasture ecosystem. Glob Chang Biol 6:475–482

    Article  Google Scholar 

  • Moore-Kucera J, Azarenko A, Brutcher L, Chozinski A (2008) In search of key soil functions to assess soil community management for sustainable sweet cherry orchards. Hortic Sci 43:38–44

    Google Scholar 

  • Mosier AR (1998) Soil processes and global warming. Biol Fertil Soils 27:221–229

    Article  CAS  Google Scholar 

  • Mosier AR, Morgan JA, King JY, LeCain D, Milchunas DG (2002) Soil-atmosphere exchange of CH4, CO2, NOx, and N2O in the Colorado shortgrass steppe under elevated CO2. Plant Soil 240:201–211

    Article  CAS  Google Scholar 

  • Muhammad W, Vaughan S, Dalal R, Menzies N (2011) Crop residues and fertilizer nitrogen influence residue decomposition and nitrous oxide emission from a vertisol. Biol Fertil Soils 47(1):15–23

    Article  CAS  Google Scholar 

  • Müller C, Abbasi MK, Kammann C, Clough TJ, Sherlock RR, Stevens RJ, Jäger HJ (2004) Soil respiratory quotient determined via barometric process separation combined with nitrogen-15 labeling. Soil Sci Soc Am J 68(5):1610–1615

    Article  Google Scholar 

  • Munda S, Bhaduri D, Mohanty S, Chatterjee D, Tripathi R, Shahid M, Kumar U, Bhattacharyya P, Kumar A, Adak T, Jangde HK (2018) Dynamics of soil organic carbon mineralization and C fractions in paddy soil on application of rice husk biochar. Biomass Bioenergy 115:1–9

    Article  CAS  Google Scholar 

  • Nayak AK, Shahid M, Shukla AK, Kumar A, Raja R, Tripathi R, Panda BB (2012) Soil organic carbon sequestration in agriculture: Issues and priorities. In: Bhattacharyya P, Nayak AK, Raja R, Rao KS (eds) Climate change: greenhouse gas emission in rice farming and mitigation options. Central Rice Research Institute, Cuttack, Odisha, India, ISBN 81-88409-12-X, pp 17–32

    Google Scholar 

  • Neher DA, Weicht TR, Moorhead DL, Sinsabaugh RL (2004) Elevated CO2 alters functional attributes of nematode communities in forest soils. Funct Ecol 18:584–591

    Article  Google Scholar 

  • Neogi S, Bhattacharyya P, Roy KS, Panda BB, Nayak AK, Rao KS, Manna MC (2014) Soil respiration, labile carbon pools, and enzyme activities as affected by tillage practices in a tropical rice–maize–cowpea cropping system. Environ Monit Assess (7):4223–4236. https://doi.org/10.1007/s10661-014-3693-x

    Article  CAS  PubMed  Google Scholar 

  • Nosalewicz M, Stêpniewska Z, Nosalewicz A (2013) Effect of soil moisture and temperature on N2O and CO2 concentrations in soil irrigated with purified wastewater. Int J Agrophys 27:299–304

    Article  CAS  Google Scholar 

  • Odlare M, Abubaker J, Lindmark J, Pell M, Thorin E, Nehrenheim E (2012) Emissions of N2O and CH4 from agricultural soils amended with two types of biogas residues. Biomass Bioenergy 44:112–116

    Article  CAS  Google Scholar 

  • Oenema O, Wrage N, Velthof GL, van Groenigen JW, Dolfing J, Kuikman PJ (2005) Trends in global nitrous oxide emissions from animal production systems. Nutr Cycl Agroecosyst 72(1):51–65

    Article  CAS  Google Scholar 

  • Olsson L, Ye S, Yu X, Wei M, Krauss KW, Brix H (2015) Factors influencing CO2 and CH4 emissions from coastal wetlands in the Liaohe Delta, Northeast China. Biogeosci Discuss 12:3469–3503

    Google Scholar 

  • Overstreet LF, DeJong-Huges J (2015) The importance of soil organic matter in cropping systems of the Northern Great Plains. University of Minnesota Extension. Available at: http://www.extension.umn.edu/agriculture/tillage/importance-of-soil-organic-matter/

  • Pare T, Dinel H, Moulin AP, Townley- Smith L (1999) Organic matter quality and structural stability of a black Cherno zemic soil under different manure and tillage practices. Geoderma 91:311–326

    Article  Google Scholar 

  • Parkin TB, Kaspar TC (2006) Nitrous oxide emissions from corn-soybean systems in the Midwest. J Environ Qual 35(4):1496–1506

    Article  CAS  PubMed  Google Scholar 

  • Parton WJ, Schimel DS, Cole CV, Ojima DS (1987) Analysis of factors controlling soil organic matter levels in great plains grasslands. Soil Sci Soc Am J 51:1173–1179

    Article  CAS  Google Scholar 

  • Pathak H, Nedwell DB (2001) Nitrous oxide emission from soil with different fertilizers, water levels and nitrification inhibitors. Water Air Soil Pollut 129(1):217–228

    Article  CAS  Google Scholar 

  • Pathak H, Rao DLN (1998) Carbon and nitrogen mineralization from added organic matter in saline and alkali soils. Soil Biol Biochem 30:695–702

    Article  CAS  Google Scholar 

  • Pathak H, Prasad S, Bhatia A, Singh S, Kumar S, Singh J, Jain MC (2003) Methane emission from rice–wheat cropping system in the Indo-Gangetic plain in relation to irrigation, farmyard manure and dicyandiamide application. Agric Ecosyst Environ 97:309–316

    Article  CAS  Google Scholar 

  • Pathak H, Jain N, Bhatia A, Kumar A, Chatterjee D (2016) Improved nitrogen management: a key to climate change adaptation and mitigation. Indian J Fertil 12(11):151–162

    Google Scholar 

  • Paul EA, Clark FE (1996) Soil as a habitat for organisms and their reactions. In: Soil microbiology and biochemistry, 2nd edn. Academic Press, New York, pp 11–33

    Chapter  Google Scholar 

  • Paul EA, Morris SJ, Bohm S (2001) The determination of soil C pool sizes and turnover rates: biophysical fractionation and tracers. In: Lal R, Kimble JM, Follett RF, Stewart BA (eds) Assessment methods for soil carbon. Lewis Publishers, Boca Raton, pp 193–206

    Google Scholar 

  • Pendall E, Bridgham S, Hanson PJ, Hungate B, Kicklighter DW, Jhonson DW, Law BE, Luo Y, Megonigal JP, Olsrud M, Ryan MG, Wan S (2004) Below-ground process responses to elevated CO2 and temperature: a discussion of observations, measurement methods, and models. New Phytol 162:311–322

    Article  Google Scholar 

  • Pereira J, Figueiredo N, Goufo P, Carneiro J, Morais R, Carranca C, Coutinho J, Trindade H (2013) Effects of elevated temperature and atmospheric carbon dioxide concentration on the emissions of methane and nitrous oxide from Portuguese flooded rice fields. Atmos Environ 80:464–471

    Article  CAS  Google Scholar 

  • Phillips DA, Fox TC, Six J (2006a) Root exudation (net efflux of amino acids) may increase rhizodeposition under elevated CO2. Glob Chang Biol 12:561–567

    Article  Google Scholar 

  • Phillips DA, Fox TC, Ferris H, Moore JC (2006b) The influence of elevated CO2 on diversity, activity and biogeochemical function of rhizosphere and soil bacterial communities. In: Nösberger J, Long SP, Norby RJ et al (eds) Managed ecosystems and CO2- case studies, processes and perspectives. Ecological studies serie, vol 187. Springer, Berlin, pp 413–428

    Google Scholar 

  • Plaza-Bonilla D, Cantero-Martínez C, Viñas P, Alvaro-Fuentes J (2013) Soil aggregation and organic carbon protection in a no-tillage chronosequence under Mediterranean conditions. Geoderma 193–194:76–82

    Article  CAS  Google Scholar 

  • Prather M, Derwent R, Ehhalt D, Fraser P, Sanhueza E, Zhou X (1995) Other trace gases and atmospheric chemistry. In: Houghton JT, Meira Filho LG, Bruce J, Lee H, Callender BA, Haites E et al (eds) Climate change 1994: radiative forcing of climate change and an evaluation of the IPCC IS92 emission scenarios. Cambridge University Press, Cambridge, pp 73–126

    Google Scholar 

  • Procter AC, Ellis JC, Fay PA, Polley HW, Jackson RB (2014) Fungal community responses to past and future atmospheric CO2 differ by soil type. Appl Environ Microbiol 80:7364–7377. https://doi.org/10.1128/AEM.02083-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rastogi M, Singh S, Pathak H (2002) Emission of carbon dioxide from soil. Curr Sci 82(5):510–517

    CAS  Google Scholar 

  • Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326(5949):123–125

    Article  CAS  PubMed  Google Scholar 

  • Read DJ, Leake JR, Perez-Moreno J (2004) Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Can J Bot 82:1243–1263

    Article  CAS  Google Scholar 

  • Reddy N, Crohn DM (2014) Effects of soil salinity and carbon availability from organic amendments on nitrous oxide emissions. Geoderma 235–236:363–371

    Article  CAS  Google Scholar 

  • Reich PB, Hobbie SE, Lee T, Ellsworth DS, West JB, Tilman D, Knops JMH, Naeem S, Trost J (2006) Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 440:922–925

    Article  CAS  PubMed  Google Scholar 

  • Rillig MC, Wright SF, Kimball BA, Leavitt SW (2001) Elevated carbon dioxide and irrigation effects on water stable aggregates in a Sorghum field: a possible role for arbuscular mycorrhizal fungi. Glob Chang Biol 7:333–337

    Article  Google Scholar 

  • Rillig M, Wright S, Eviner V (2002) The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant Soil 238:325–333

    Article  CAS  Google Scholar 

  • Rilling MC, Wright SF, Allen MF, Field CB (1999) Rise in carbon dioxide changes soil structure. Nature 400:628

    Article  CAS  Google Scholar 

  • Rizhiya E, Bertora C, Van Vliet PCJ, Kuikman PJ, Faber JH, Van Groenigen JW (2007) Earthworm activity as a determinant for N2O emission from crop residue. Soil Biol Biochem 39(8):2058–2069

    Article  CAS  Google Scholar 

  • Rochette P, Desjardins RL, Pattey E (1991) Spatial and temporal variability of soil respiration in agricultural fields. Can J Soil Sci 71:189–196

    Article  Google Scholar 

  • Rogers A, Fischer BU, Bryant J, Frehner M, Blum H, Raines CA, Long SP (1998) Acclimation of photosynthesis to elevated CO2 under low-nitrogen nutrition is affected by the capacity for assimilate utilization-perennial ryegrass under free-air CO2 enrichment. Plant Physiol 118:683–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenkranz P, Bruggemann N, Papen H, Xu Z, Seufert G, Butterbach-Bahl K (2006) N2O NO and CH4 exchange, and microbial N turnover over a Mediterranean pine forest soil. Biogeosciences 3(2):121–133

    Article  CAS  Google Scholar 

  • Ruess L, Michelsen A, Schmidt IK, Jonasson S (1999) Simulated climate change affecting microorganisms, nematode density and biodiversity in subarctic soils. Plant Soil 212:63–73

    Article  CAS  Google Scholar 

  • Rusera R, Flessa H, Russow R, Schmidt G, Buegger F, Munch JC (2006) Emission of N2O, N2 and CO2 from soil fertilized with nitrate: effect of compaction, soil moisture and rewetting. Soil Biol Biochem 38(2):263–274

    Article  CAS  Google Scholar 

  • Saha S, Chakraborty D, Lata, Pal M, Nagarajan S (2011) Impact of elevated CO2 on utilization of soil moisture and associated soil biophysical parameters in pigeon pea (Cajanus cajan L.). Agric Ecosyst Environ 142:213–221

    Article  Google Scholar 

  • Saha S, Chakraborty D, Sehgal VK, Pal M (2015) Rising atmospheric CO2: potential impacts on chickpea seed qualityAgric. Ecosyst Environ 203:140–146

    Article  CAS  Google Scholar 

  • Sanchez ML, Ozores MI, Colle R, Lopez MJ, De Torre B, Garcia MA, Perez I (2002) Fluxes in cereal land use of the Spanish plateau: influence of conventional and reduced tillage practices. Chemosphere 47:837–844

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-de León Y, Lugo-Pérez J, Wise DH, Jastrowe JD, González-Meler MA (2014) Aggregate formation and carbon sequestration by earthworms in soil from a temperate forest exposed to elevated atmospheric CO2: a microcosm experiment. Soil Biol Biochem 68:223–230

    Article  CAS  Google Scholar 

  • Sardans J, Penuelas J, Estiarte M (2008) Changes in soil enzymes related to C and N cycle and in soil C and N content under prolonged warming and drought in a Mediterranean shrubland. Appl Soil Ecol 39:223–235

    Article  Google Scholar 

  • Sato A, Seto M (1999) Relationship between rate of carbon dioxide evolution, microbial biomass carbon, and amount of dissolved organic carbon as affected by temperature and water content of a forest and an arable soil. Commun Soil Sci Plant Anal 30:2593–2605

    Article  CAS  Google Scholar 

  • Scherber C, Eisenhauer N, Weisser WW, Schmid B, Voigt W, Fischer M, Schulze ED, Roscher C, Weigelt A, Allan E, Bessler H, Bonkowski M, Buchmann N, Buscot F, Clement LW, Ebeling A, Engels C, Halle S, Kertscher I, Klein AM, Koller R, König S, Kowalski E, Kummer V, Kuu A, Lange M, Lauterbach D, Middelhoff C, Migunova VD, Milcu A, Müller R, Partsch S, Petermann JS, Renker C, Rottstock T, Sabais A, Scheu S, Schumacher J, Temperton VM, Tscharntke T (2010) Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468:553–556

    Article  CAS  PubMed  Google Scholar 

  • Schimel J, Balser TC, Wallenstein M (2007) Microbial stress-response physiology and its implications for ecosystem function. Ecology 88:1386–1394

    Article  PubMed  Google Scholar 

  • Schnitzer M (1991) Soil organic matter-the next 75 years. Soil Sci 151:41–58

    Article  Google Scholar 

  • Sehy U, Ruser R, Munch JC (2003) Nitrous oxide fluxes from maize fields: relationship to yield, site-specific fertilization, and soil conditions. Agric Ecosyst Environ 99(1–3):97–111

    Article  CAS  Google Scholar 

  • Shan J, Yan X (2013) Effects of crop residue returning on nitrous oxide emissions in agricultural soils. Atmos Environ 71:170–175

    Article  CAS  Google Scholar 

  • Sillen WMA, Dieleman WIJ (2012) Root biomass responses to elevated CO2 limit soil C sequestration in managed grasslands. Biogeosci Discuss 9:357–386

    Article  Google Scholar 

  • Singh S, Singh JS, Kashyap AK (1999) Methane flux from irrigated rice fields in relation to crop growth and N-fertilization. Soil Biol Biochem 31:1219–1228

    Article  CAS  Google Scholar 

  • Singurindy O, Molodovskaya M, Richards BK, Steenhuis TS (2009) Nitrous oxide emission at low temperatures from manure-amended soils under corn (Zea mays L.). Agric Ecosyst Environ 132(1–2):74–81

    Article  CAS  Google Scholar 

  • Skinner C, Gattinger A, Muller A, Mäder P, Flieβbach A, Stolze M, Ruser R, Niggli U (2014) Greenhouse gas fluxes from agricultural soils under organic and non-organic management – a global meta-analysis. Sci Total Environ 468–469:553–563

    Article  PubMed  CAS  Google Scholar 

  • Slaughter LC (2012) Soil microbial community response to climate change: esults from a temperate kentucky pasture. Theses and dissertations-Plant soil sciences. Paper 8. http://uknowledge.uky.edu/pss_etds/8

  • Sollins P, Homann P, Caldwell BA (1996) Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma 74:65–105

    Article  Google Scholar 

  • Steinweg JM, Dukes JS, Wallenstein MD (2012) Modeling the effects of temperature and moisture on soil enzyme activity: linking laboratory assays to continuous field data. Soil Biol Biochem 55:85–92. https://doi.org/10.1016/j.soilbio.2012.06.015

    Article  CAS  Google Scholar 

  • Steinweg JM, Dukes JS, Paul EA, Wallenstein MD (2013) Microbial responses to multi-factor climate change: effects on soil enzymes. Front Microbiol 4:1–13. https://doi.org/10.3389/fmicb.2013.00146

    Article  CAS  Google Scholar 

  • Stone MM, Weiss MS, Goodale CL, Adams MB, Fernandez IJ, German DP et al (2012) Temperature sensitivity of soil enzyme kinetics under N- fertilization in two temperate forests. Glob Chang Biol 18:1173–1184. https://doi.org/10.1111/j.13652486.2011.02545.x

    Article  Google Scholar 

  • Subbarao GV, Ito O, Sahrawat KL, Berry WL, Nakahara K, Ishikawa T, Watanabe T, Suenaga K, Rondon M, Rao IM (2006) Scope and strategies for regulation of nitrification in agricultural systems-challenges and opportunities. Crit Rev Plant Sci 25:303–335

    Article  CAS  Google Scholar 

  • Sugihara S, Funakawa S, Kilasara M, Kosaki T (2012) Effects of land management on CO2 flux and soil C stock in two Tanzanian croplands with contrasting soil texture. Soil Biol Biochem 46:1–9

    Article  CAS  Google Scholar 

  • Suseela V, Conant RT, Wallenstein MD, Dukes JS (2012) Effects of soil moisture on the temperature sensitivity of heterotrophic respiration vary seasonally in an old-field climate change experiment. Glob Chang Biol 18:336–348. https://doi.org/10.1111/j.13652486.2011.02516.x

  • Swain CK, Bhattacharyya P, Nayak AK, Singh NR, Chatterjee D, Dash PK, Neogi S, Pathak H (2018a) Temporal variation of energy fluxes during dry season in tropical lowland rice. MAPAN-Journal of Metrology Society of India. https://doi.org/10.1007/s12647-018-0260-x.

    Article  Google Scholar 

  • Swain CK, Nayak AK, Bhattacharyya P, Chatterjee D, Chatterjee S, Tripathi R, Singh NR, Dhal B (2018b) Greenhouse gas emissions and energy exchange in wet and dry season rice: eddy covariance-based approach. Environ Monit Assess 190(7): 423. https://doi.org/10.1007/s10661-018-6805-1

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems-studies ecology, 5th volume. Blackwell Scientific, Oxford

    Google Scholar 

  • Tarnawski S, Aragno M (2006) The influence of elevated CO2 on diversity, activity and biogeochemical function of rhizosphere and soil bacterial communities. In: Nösberger J, Long SP, Norby RJ et al (eds) Managed ecosystems and CO2-case studies, processes and perspectives, Ecological studies series, vol 187. Springer, Berlin, pp 393–409

    Google Scholar 

  • Tellez-Rio A, García-Marco S, Navas M, López-Solanilla E, Luis J, Tenorio JL, Vallejo A (2015) N2O and CH4 emissions from a fallow–wheat rotation with low N input in conservation and conventional tillage under a Mediterranean agroecosystem. Sci Total Environ 508:85–94

    Article  CAS  PubMed  Google Scholar 

  • Tisdale SL, Nelson WL (1970) Soil fertility and fertilizers, 2nd edn. Macmillan, New York

    Google Scholar 

  • Toma Y, Hatano R (2007) Effect of crop residue C: N ratio on N2O emissions fromGray lowland soil in Mikasa, Hokkaido, Japan. Soil Sci Plant Nutr 53:198–205

    Article  CAS  Google Scholar 

  • Topp E, Pattey E (1997) Soil as a source and sinks of atmospheric methane. Can J Soil Sci 77:167–178

    Article  CAS  Google Scholar 

  • Tubiello F (2012) Climate change adaptation and mitigation: challenges and opportunities in the food sector. Natural Resources Management and Environment Department, FAO, Rome. Prepared for the High-level conference on world food security: the challenges of climate change and bio energy, Rome, 3–5 June 2008

    Google Scholar 

  • United Nations (2008) World population prospects-the 2008 revision. Executive summary. ST/ESA/SER.A/287/ES. New York

    Google Scholar 

  • Ussiri D, Lal R (2013) Formation and release of nitrous oxide from terrestrial and aquatic ecosystems, soil emission of nitrous oxide and its mitigation. Springer, Dordrecht, pp 63–96

    Google Scholar 

  • van den Heuvel RN, Bakker SE, Jetten MSM, Hefting MM (2011) Decreased N2O reduction by low soil pH causes high N2O emissions in a riparian ecosystem. Geobiology 9(3):294–300

    Article  PubMed  CAS  Google Scholar 

  • van Groenigen JW, Kasper GJ, Velthof GL, van den Pol-van Dasselaar A, Kuikman PJ (2004) Nitrous oxide emissions from silage maize fields under different mineral nitrogen fertilizer and slurry applications. Plant Soil 263(1):101–111

    Article  Google Scholar 

  • van Groenigen KJ, Qi X, Osenberg CW, Luo Y, Hungate BA (2014) Faster decomposition under increased atmospheric CO2 limits soil carbon storage. Science 344(6183):508–509. https://doi.org/10.1126/science.1249534

    Article  CAS  PubMed  Google Scholar 

  • van Kessel C, Venterea R, Six J, Adviento-Borbe MA, Linquist B, van Groenigen KJ (2013) Climate duration, and N placement determine N2O emissions in reduced tillage systems: a meta-analysis. Glob Chang Biol 19:33–44

    Article  PubMed  Google Scholar 

  • Velthof GL, Oenema O (1995) Nitrous oxide fluxes from grassland in the Netherlands: II. Effects of soil type, nitrogen fertilizer application and grazing. Eur J Soil Sci 46:541–549

    Article  Google Scholar 

  • Velthof GL, Oenema O, Postma R, Beusichem ML (1997) Effects of type and amount of applied nitrogen fertilizer on nitrous oxide fluxes from intensively managed grassland. Nutr Cycl Agroecosyst 46(3):257–267

    Article  Google Scholar 

  • Velthof GL, Kuikman PJ, Oenema O (2003) Nitrous oxide emission from animal manures applied to soil under controlled conditions. Biol Fertil Soils 37(4):221–230

    CAS  Google Scholar 

  • Venterea RT, Rolston DE, Cardon ZG (2005) Effects of soil moisture, physical, and chemical characteristics on abiotic nitric oxide production. Nutr Cycl Agroecosyst 72(1):27–40

    Article  CAS  Google Scholar 

  • von Lützow M, Kögel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions. Eur J Soil Sci 57:426–445

    Article  CAS  Google Scholar 

  • Wallenstein MD, Haddix ML, Lee DD, Conant RT, Paul EA (2012) A litter-slurry technique elucidates the key role of enzyme production and microbial dynamics in temperature sensitivity of organic matter decomposition. Soil Biol Biochem 47:18–26

    Article  CAS  Google Scholar 

  • Wander M (2004) Soil organic matter fractions and their relevance to soil function. In: Magdoff F, Ray RW (eds) Soil organic matter in sustainable agriculture. CRC Press LLC, Boca Raton, pp 67–102

    Google Scholar 

  • Wang WC, Yung YL, Lacis AA, Mo T, Hansen JE (1976) Greenhouse effects due to man-made perturbations of trace gases. Science 194:685–690

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Shikui D, Gao Q, Zhou H, Liu S, Su X, Li Y (2014) Effects of short-term and long-term warming on soil nutrients, microbial biomass and enzyme activities in an alpine meadow on the Qinghai-Tibet plateau of China. Soil Biol Biochem 76:140–142. https://doi.org/10.1016/j.soilbio.2014.05.014

    Article  CAS  Google Scholar 

  • Wardle DA, Parkinson D (1990) Interactions between microclimatic variables and the soil microbial biomass. Biol Fertil Soils 9:273–280

    Article  Google Scholar 

  • Weier KL, Doran JW, Power JF, Walters DT (1993) Denitrification and the dinitrogen/nitrous oxide ratio as affected by soil water, available carbon, and nitrate. Soil Sci Soc Am J 57(1):66–72

    Article  CAS  Google Scholar 

  • West TO, Marland G (2002) A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States. Agric Ecosyst Environ 91:217–232

    Article  Google Scholar 

  • Weston NB, Vile MA, Neubauer SC, Velinsky DJ (2011) Accelerated microbial organic matter mineralization following salt-water intrusion into tidal freshwater marsh soils. Biogeochemistry 102:135–151

    Article  CAS  Google Scholar 

  • Whalen SC (2005) Biogeochemistry of methane exchange between natural wetlands and the atmosphere. Environ Eng Sci 22:73–94

    Article  CAS  Google Scholar 

  • Willey JM, Sherwood LM, Woolverton CJ (2009) Prescott’s principles of microbiology. McGraw-Hill, New York

    Google Scholar 

  • Williams MA (2007) Response of microbial communities to water stress in irrigated and drought-prone tallgrass prairie soils. Soil Biol Biochem 39:2750–2757

    Article  CAS  Google Scholar 

  • Williams MAC, Rice W, Owensby WE (2000) C dynamics and microbial activity in tallgrass prairie exposed to elevated CO2 for 8 years. Plant Soil 227:127–137

    Article  CAS  Google Scholar 

  • WÅ‚odarczyk T (2000) N2O emission and absorption against a background of CO2 in Eutric Cambisol under different oxidation- reduction conditions. Acta Agrophysica 28:39–89

    Google Scholar 

  • World Meteorological Organization (2011) The state of greenhouse gases in the atmosphere based on global observations through 2010. World Meteorological Organization greenhouse gases bulletin no. 7. World Meteorological Organization. http://www.wmo.int/gaw

  • Wrage N, Velthof GL, van Beusichem KL (2001) Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol Biochem 33(12–13):1723–1732

    Article  CAS  Google Scholar 

  • Wu D, Dong W, Oenema O, Wang Y, Trebs I, Hua C (2013) N2O consumption by low-nitrogen soil and its regulation by water and oxygen. Soil Biol Biochem 60:165–172

    Article  CAS  Google Scholar 

  • Xing G, Zhao X, Xiong Z, Yan X, Xu H, Xie Y, Shi S (2009) Nitrous oxide emission from paddy fields in China. Acta Ecol Sin 29:45–50

    Article  Google Scholar 

  • Xu H, Cai ZC, Tsuruta H (2003) Soil moisture between rice-growing seasons affects methane emission, production, and oxidation. Soil Sci Soc Am J 67:1147–1157

    Article  CAS  Google Scholar 

  • Yang XM, Drury CF, Reynolds WD, McKenney DJ, Tan CS, Zhang TQ, Fleming RJ (2002) Influence of compost and liquid pig manure on CO2 and N2O emissions from a clay loam soil. Can J Soil Sci 82(4):395–401

    Article  Google Scholar 

  • Yang J, Liu J, Hu X, Li X, Wang Y, Li H (2013) Effect of water table level on CO2, CH4 and N2O emissions in a freshwater marsh of Northeast China. Soil Biol Biochem 61:52–60

    Article  CAS  Google Scholar 

  • Yao Z, Zheng X, Wang R, Xie B, Butterbach-Bahl K, Zhu J (2013) Nitrous oxide and methane fluxes from a rice–wheat crop rotation under wheat residue incorporation and no-tillage practices. Atmos Environ 79:641–649

    Article  CAS  Google Scholar 

  • Zak DR, Pregitzer KS, King JS, Holmes WE (2000) Elevated atmospheric CO2, fine roots and the response of soil microorganisms: a review and hypothesis. New Phytol 147:201–222

    Article  CAS  Google Scholar 

  • Zhang J, Han X (2008) N2O emission from the semi-arid ecosystem under mineral fertilizer (urea and superphosphate) and increased precipitation in northern China. Atmos Environ 42(2):291–302

    Article  CAS  Google Scholar 

  • Zhang Y, Chen X, Zhang C, Pan G, Zhang X (2014) Availability of soil nitrogen and phosphorus under elevated [CO2] and temperature in the Taihu Lake region. China J Plant Nutr Soil Sci 177:343–348. https://doi.org/10.1002/jpln.201200526

    Article  CAS  Google Scholar 

  • Zhou M, Zhu B, Butterbach-Bahl K, Zheng X, Wang T, Wang Y (2013) Nitrous oxide emissions and nitrate leaching from a rainfed wheat-maize rotation in the Sichuan Basin. China Plant Soil 362(1–2):149–159

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chatterjee, D., Saha, S. (2018). Response of Soil Properties and Soil Microbial Communities to the Projected Climate Change. In: Bal, S., Mukherjee, J., Choudhury, B., Dhawan, A. (eds) Advances in Crop Environment Interaction. Springer, Singapore. https://doi.org/10.1007/978-981-13-1861-0_4

Download citation

Publish with us

Policies and ethics