Advertisement

Hyperspectral Remote Sensing: Use in Detecting Abiotic Stresses in Agriculture

  • Bappa DasEmail author
  • Gopal R. Mahajan
  • Ronald Singh
Chapter

Abstract

Abiotic stresses are one of the major factors affecting crop production in many parts of the globe. The need of the hour is to reduce the yield losses due to these abiotic stresses. In this connection, early detection and corrective measures can help to reduce the impact of stresses on crop growth and yield. The recent developments in remote sensing particularly hyperspectral remote sensing hold a major key in early detection of abiotic stress over a larger area with less involvement of cost, time and labour. The works relevant to abiotic stress characterization particularly water and nutrient stress based on plant spectral reflectance are dealt in this chapter. The research work done previously elucidates that the water and nutrient monitoring through remote sensing is possible. The remote sensing-based techniques can lead to the development of real-time management of water and nutrient stress, thereby reducing the yield losses due these stresses.

Keywords

Abiotic stress Hyperspectral remote sensing Water-deficit stress Nutrient stress Crops 

References

  1. Araus JL, Casadesus J, Bort J (2001) Recent tools for the screening of physiological traits determining yield. In: Reynolds MP, Ortiz-Monasterio JI, McNab A (eds) Application of physiology in wheat breeding. CIMMYT, MexicoGoogle Scholar
  2. Ashraf M, Athar HR, Harris PJC, Kwon TR (2008) Some prospective strategies for improving crop salt tolerance. Adv Agron 97:45–110.  https://doi.org/10.1016/S0065-2113(07)00002-8 CrossRefGoogle Scholar
  3. Asner GP, Martin RE (2008) Spectral and chemical analysis of tropical forests: scaling from leaf to canopy levels. Remote Sens Environ 112:3958–3970.  https://doi.org/10.1016/j.rse.2008.07.003 CrossRefGoogle Scholar
  4. Asrar GQ, Fuchs M, Kanemasu ET, Hatfield JL (1984) Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat 1. Agron J 76:300–306CrossRefGoogle Scholar
  5. Babar MA, Reynolds MP, Van Ginkel M et al (2006) Spectral reflectance indices as a potential indirect selection criteria for wheat yield under irrigation. Crop Sci 46:578–588.  https://doi.org/10.2135/cropsci2005.0059 CrossRefGoogle Scholar
  6. Bauer ME, Daughtry CST, Biehl LL et al (1986) Field spectroscopy of agricultural crops. IEEE Trans Geosci Remote Sens GE-24:65–75. https://doi.org/10.1109/TGRS.1986.289589 CrossRefGoogle Scholar
  7. Blackburn GA (1998) Spectral indices for estimating photosynthetic pigment concentrations: a test using senescent tree leaves. Int J Remote Sens 19:657–675.  https://doi.org/10.1080/014311698215919 CrossRefGoogle Scholar
  8. Blackburn GA (1999) Relationships between spectral reflectance and pigment concentrations in stacks of deciduous broadleaves. Remote Sens Environ 70:224–237CrossRefGoogle Scholar
  9. Blackburn GA (2007) Wavelet decomposition of hyperspectral data: a novel approach to quantifying pigment concentrations in vegetation. Int J Remote Sens 28:2831–2855CrossRefGoogle Scholar
  10. Boyer JS (1982) Plant productivity and environment. Science 218:443–448.  https://doi.org/10.1126/science.218.4571.443 CrossRefPubMedGoogle Scholar
  11. Broge NH, Leblanc E (2001) Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens Environ 76:156–172CrossRefGoogle Scholar
  12. Campbell PKE, Middleton EM, McMurtrey JE, Chappelle EW (2007) Assessment of vegetation stress using reflectance or fluorescence measurements. J Environ Qual 36:832–845CrossRefGoogle Scholar
  13. Carter GA (1993) Responses of leaf spectral reflectance to plant stress. Am J Bot 80:239–243CrossRefGoogle Scholar
  14. Ceccato P, Flasse S, Tarantola S et al (2001) Detecting vegetation leaf water content using reflectance in the optical domain. Remote Sens Environ 77:22–33.  https://doi.org/10.1016/S0034-4257(01)00191-2 CrossRefGoogle Scholar
  15. Ceccato P, Flasse S, Grégoire J-M (2002) Designing a spectral index to estimate vegetation water content from remote sensing data. Remote Sens Environ 82:198–207.  https://doi.org/10.1016/S0034-4257(02)00036-6 CrossRefGoogle Scholar
  16. Chaerle L, De Boever F, Van Der Straeten D (2002) Infrared detection of early biotic and wound stress in plants. Thermol Int 12:100–106Google Scholar
  17. Champagne CM, Staenz K, Bannari A et al (2003) Validation of a hyperspectral curve-fitting model for the estimation of plant water content of agricultural canopies. Remote Sens Environ 87:148–160.  https://doi.org/10.1016/S0034-4257(03)00137-8 CrossRefGoogle Scholar
  18. Chapman SC (2008) Use of crop models to understand genotype by environment interactions for drought in real-world and simulated plant breeding trials. Euphytica 161:195–208CrossRefGoogle Scholar
  19. Chen X, Vierling L, Deering D (2005) A simple and effective radiometric correction method to improve landscape change detection across sensors and across time. Remote Sens Environ 98:63–79CrossRefGoogle Scholar
  20. Chen S, Li D, Wang Y et al (2011) Spectral characterization and prediction of nutrient content in winter leaves of litchi during flower bud differentiation in southern China. Precis Agric 12:682–698CrossRefGoogle Scholar
  21. Cheng T, Rivard B, Sánchez-Azofeifa A (2011) Spectroscopic determination of leaf water content using continuous wavelet analysis. Remote Sens Environ 115:659–670.  https://doi.org/10.1016/j.rse.2010.11.001 CrossRefGoogle Scholar
  22. Cho MA, Skidmore A, Corsi F et al (2007) Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression. Int J Appl Earth Obs Geoinf 9:414–424.  https://doi.org/10.1016/j.jag.2007.02.001 CrossRefGoogle Scholar
  23. Chuvieco E, Riaño D, Aguado I, Cocero D (2002) Estimation of fuel moisture content from multitemporal analysis of landsat thematic mapper reflectance data: applications in fire danger assessment. Int J Remote Sens 23:2145–2162.  https://doi.org/10.1080/01431160110069818 CrossRefGoogle Scholar
  24. Cohen Y, Alchanatis V, Zusman Y et al (2010) Leaf nitrogen estimation in potato based on spectral data and on simulated bands of the VENμS satellite. Precis Agric 11:520–537CrossRefGoogle Scholar
  25. Curran PJ (1989) Remote sensing of foliar chemistry. Remote Sens Environ 30:271–278.  https://doi.org/10.1016/0034-4257(89)90069-2 CrossRefGoogle Scholar
  26. Darvishzadeh R, Skidmore A, Schlerf M et al (2008) LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements. ISPRS J Photogramm Remote Sens 63:409–426.  https://doi.org/10.1016/j.isprsjprs.2008.01.001 CrossRefGoogle Scholar
  27. Das B, Sahoo RN, Pargal S et al (2015) Spectral based non-invasive estimation of plant chlorophyll content. J Agric Phys 15:88–102Google Scholar
  28. Das B, Sahoo RN, Pargal S et al (2017) Comparison of different uni- and multi-variate techniques for monitoring leaf water status as an indicator of water-deficit stress in wheat through spectroscopy. Biosyst Eng 160:69–83.  https://doi.org/10.1016/j.biosystemseng.2017.05.007 CrossRefGoogle Scholar
  29. Das B, Sahoo RN, Pargal S et al (2018) Quantitative monitoring of sucrose, reducing sugar and total sugar dynamics for phenotyping of water-deficit stress tolerance in rice through spectroscopy and chemometrics. Spectrochim Acta Part A Mol Biomol Spectrosc 192:41–51.  https://doi.org/10.1016/j.saa.2017.10.076 CrossRefGoogle Scholar
  30. Datt B (1999) Remote sensing of water content in eucalyptus leaves. Aust J Bot 47:909.  https://doi.org/10.1071/BT98042 CrossRefGoogle Scholar
  31. Doraiswamy PC, Moulin S, Cook PW, Stern A (2003) Crop yield assessment from remote sensing. Photogramm Eng Remote Sens 69:665–674.  https://doi.org/10.14358/PERS.69.6.665 CrossRefGoogle Scholar
  32. Eitel JUH, Gessler PE, Smith AMS, Robberecht R (2006) Suitability of existing and novel spectral indices to remotely detect water stress in Populus spp. For Ecol Manag 229:170–182.  https://doi.org/10.1016/j.foreco.2006.03.027 CrossRefGoogle Scholar
  33. El-Shikha DM, Waller P, Hunsaker D et al (2007) Ground-based remote sensing for assessing water and nitrogen status of broccoli. Agric Water Manag 92:183–193CrossRefGoogle Scholar
  34. Fabre S, Lesaignoux A, Olioso A, Briottet X (2011) Influence of water content on spectral reflectance of leaves in the 3–15- μm domain. IEEE Geosci Remote Sens Lett 8:143–147.  https://doi.org/10.1109/LGRS.2010.2053518 CrossRefGoogle Scholar
  35. Ferwerda JG, Skidmore AK (2007) Can nutrient status of four woody plant species be predicted using field spectrometry? ISPRS J Photogramm Remote Sens 62:406–414CrossRefGoogle Scholar
  36. Galvez-Sola L, García-Sánchez F, Pérez-Pérez JG et al (2015) Rapid estimation of nutritional elements on citrus leaves by near infrared reflectance spectroscopy. Front Plant Sci 6:1–8Google Scholar
  37. Gao B-C (1996) NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ 58:257–266.  https://doi.org/10.1016/S0034-4257(96)00067-3 CrossRefGoogle Scholar
  38. Gates DM, Keegan HJ, Schleter JC, Weidner VR (1965) Spectral properties of plants. Appl Opt 4:11–20CrossRefGoogle Scholar
  39. Gausman HW (1974) Leaf reflectance of near-infrared. Photogramm Eng 40:183–191Google Scholar
  40. Geladi P, Kowalski BR (1986) Partial least-squares regression: a tutorial. Anal Chim Acta 185:1–17CrossRefGoogle Scholar
  41. Gerber F, Marion R, Olioso A et al (2011) Modeling directional–hemispherical reflectance and transmittance of fresh and dry leaves from 0.4μm to 5.7μm with the PROSPECT-VISIR model. Remote Sens Environ 115:404–414.  https://doi.org/10.1016/j.rse.2010.09.011 CrossRefGoogle Scholar
  42. Gitelson A, Merzlyak MN (1994) Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. J Plant Physiol 143:286–292.  https://doi.org/10.1016/S0176-1617(11)81633-0 CrossRefGoogle Scholar
  43. Gitelson AA, Merzlyak MN (1997) Remote estimation of chlorophyll content in higher plant leaves. Int J Remote Sens 18:2691–2697CrossRefGoogle Scholar
  44. Gitelson AA, Kaufman YJ, Merzlyak MN (1996) Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens Environ 58:289–298.  https://doi.org/10.1016/S0034-4257(96)00072-7 CrossRefGoogle Scholar
  45. Goetz AFH, Vane G, Solomon JE, Rock BN (1985) Imaging spectrometry for earth remote sensing. Science 228:1147–1153.  https://doi.org/10.1126/science.228.4704.1147 CrossRefPubMedGoogle Scholar
  46. Guilioni L, Jones HG, Leinonen I, Lhomme JP (2008) On the relationships between stomatal resistance and leaf temperatures in thermography. Agric For Meteorol 148:1908–1912.  https://doi.org/10.1016/j.agrformet.2008.07.009 CrossRefGoogle Scholar
  47. Gutierrez M, Reynolds MP, Klatt AR (2010) Association of water spectral indices with plant and soil water relations in contrasting wheat genotypes. J Exp Bot 61:3291–3303CrossRefGoogle Scholar
  48. Hansen PM, Schjoerring JK (2003) Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens Environ 86:542–553.  https://doi.org/10.1016/S0034-4257(03)00131-7 CrossRefGoogle Scholar
  49. Hardisky MA, Klemas V, Smart RM (1983) The influence of soil salinity, growth form, and leaf moisture on the spectral radiance of Spartina alterniflora canopies. Photogramm Eng Remote Sensing 49:77–83Google Scholar
  50. Harry V (2006) Principles of soil and plant water relations. Geoderma 133:478Google Scholar
  51. Hatfield JL, Gitelson AA, Schepers JS, Walthall CL (2008) Application of spectral remote sensing for agronomic decisions. Agron J 100:S–117CrossRefGoogle Scholar
  52. Havlin JL, Beaton JD, Tisdale SL, Nelson WL (2005) Soil fertility and fertilizers: an introduction to nutrient management. Pearson Prentice Hall, Upper Saddle RiverGoogle Scholar
  53. Herrmann I, Karnieli A, Bonfil DJ et al (2010) SWIR-based spectral indices for assessing nitrogen content in potato fields. Int J Remote Sens 31:5127–5143CrossRefGoogle Scholar
  54. Horler DNH, Docray M, Barber J (1983) The red edge of plant leaf reflectance. Int J Remote Sens 4:273–288.  https://doi.org/10.1080/01431168308948546 CrossRefGoogle Scholar
  55. Huang Z, Turner BJ, Dury SJ et al (2004) Estimating foliage nitrogen concentration from HYMAP data using continuum removal analysis. Remote Sens Environ 93:18–29.  https://doi.org/10.1016/j.rse.2004.06.008 CrossRefGoogle Scholar
  56. Hunt ER Jr, Rock BN (1989) Detection of changes in leaf water content using near-and middle-infrared reflectances. Remote Sens Environ 30:43–54CrossRefGoogle Scholar
  57. Hunt ERJ, Rock BN (1989) Detection of changes in leaf water content using near- and middle-infrared reflectances. Remote Sens Environ 30:43–54.  https://doi.org/10.1016/0034-4257(89)90046-1 CrossRefGoogle Scholar
  58. Jensen JR (2009) Remote sensing of the environment: an earth resource perspective 2/e. Pearson Education India, ChennaiGoogle Scholar
  59. Ji HY, Wang PX, Yan TL (2007) [Estimations of chlorophyll and water contents in live leaf of winter wheat with reflectance spectroscopy]. Guang pu xue yu guang pu fen xi = Guang pu 27:514–516Google Scholar
  60. Johansson J, Hagman O, Fjellner B-A (2003) Predicting moisture content and density distribution of Scots pine by microwave scanning of sawn timber. J Wood Sci 49:312–316.  https://doi.org/10.1007/s10086-002-0493-7 CrossRefGoogle Scholar
  61. Knox NM, Skidmore AK, Prins HHT et al (2012) Remote sensing of forage nutrients: combining ecological and spectral absorption feature data. ISPRS J Photogramm Remote Sens 72:27–35CrossRefGoogle Scholar
  62. Li L, Ustin SL, Lay M (2005) Application of multiple endmember spectral mixture analysis (MESMA) to AVIRIS imagery for coastal salt marsh mapping: a case study in China Camp, CA. USA Int J Remote Sens 26:5193–5207.  https://doi.org/10.1080/01431160500218911 CrossRefGoogle Scholar
  63. Li F, Mistele B, Hu Y et al (2014) Reflectance estimation of canopy nitrogen content in winter wheat using optimised hyperspectral spectral indices and partial least squares regression. Eur J Agron 52:198–209CrossRefGoogle Scholar
  64. Li D, Wang C, Liu W et al (2016) Estimation of litchi (Litchi chinensis Sonn.) leaf nitrogen content at different growth stages using canopy reflectance spectra. Eur J Agron 80:182–194CrossRefGoogle Scholar
  65. Lichtenthaler HK, Gitelson A, Lang M (1996) Non-destructive determination of chlorophyll content of leaves of a green and an aurea mutant of tobacco by reflectance measurements. J Plant Physiol 148:483–493CrossRefGoogle Scholar
  66. Mahajan GR, Sahoo RN, Pandey RN et al (2014) Using hyperspectral remote sensing techniques to monitor nitrogen, phosphorus, sulphur and potassium in wheat (Triticum aestivum L.). Precis Agric 15:499–522CrossRefGoogle Scholar
  67. Mahajan GR, Pandey RN, Sahoo RN et al (2016) Monitoring nitrogen, phosphorus and sulphur in hybrid rice (Oryza sativa L.) using hyperspectral remote sensing. Precis Agric 15:499–522.  https://doi.org/10.1007/s11119-016-9485-2 CrossRefGoogle Scholar
  68. Malingreau JP (1989) The vegetation index and the study of vegetation dynamics. In: Toselli F (ed) Applications of remote sensing to agrometeorology. Springer, Dordrecht, pp 285–303CrossRefGoogle Scholar
  69. Maron JL, Crone E (2006) Herbivory: effects on plant abundance, distribution and population growth. Proc R Soc B Biol Sci 273:2575–2584.  https://doi.org/10.1098/rspb.2006.3587 CrossRefGoogle Scholar
  70. McGwire K, Minor T, Fenstermaker L (2000) Hyperspectral mixture modeling for quantifying sparse vegetation cover in arid environments. Remote Sens Environ 72:360–374CrossRefGoogle Scholar
  71. Möller M, Alchanatis V, Cohen Y et al (2006) Use of thermal and visible imagery for estimating crop water status of irrigated grapevine. J Exp Bot 58:827–838CrossRefGoogle Scholar
  72. Montes JM, Melchinger AE, Reif JC (2007) Novel throughput phenotyping platforms in plant genetic studies. Trends Plant Sci 12:433–436CrossRefGoogle Scholar
  73. Mulla DJ (2013) Twenty five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps. Biosyst Eng 114:358–371CrossRefGoogle Scholar
  74. Munjal R, Dhanda SS (2005) Physiological evaluation of wheat (Triticum aestivum L) genotypes for drought resistance. Indian J Genet Plant Breed 65:307–308Google Scholar
  75. Mutanga O, Skidmore AK (2004) Hyperspectral band depth analysis for a better estimation of grass biomass (Cenchrus ciliaris) measured under controlled laboratory conditions. Int J Appl Earth Obs Geoinf 5:87–96.  https://doi.org/10.1016/j.jag.2004.01.001 CrossRefGoogle Scholar
  76. Mutanga O, Skidmore AK, Kumar L, Ferwerda J (2005) Estimating tropical pasture quality at canopy level using band depth analysis with continuum removal in the visible domain. Int J Remote Sens 26:1093–1108.  https://doi.org/10.1080/01431160512331326738 CrossRefGoogle Scholar
  77. Nguyen HT, Lee B-W (2006) Assessment of rice leaf growth and nitrogen status by hyperspectral canopy reflectance and partial least square regression. Eur J Agron 24:349–356.  https://doi.org/10.1016/j.eja.2006.01.001 CrossRefGoogle Scholar
  78. Oerke E-C (2006) Crop losses to pests. J Agric Sci 144:31.  https://doi.org/10.1017/S0021859605005708 CrossRefGoogle Scholar
  79. Osborne SL, Schepers JS, Francis DD, Schlemmer MR (2002) Detection of phosphorus and nitrogen deficiencies in corn using spectral radiance measurements. Agron J 94:1215–1221CrossRefGoogle Scholar
  80. Pagani A, Echeverría HE (2011) Performance of sulfur diagnostic methods for corn. Agron J 103:413–421CrossRefGoogle Scholar
  81. Peñuelas J, Filella I (1998) Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends Plant Sci 3:151–156.  https://doi.org/10.1016/S1360-1385(98)01213-8 CrossRefGoogle Scholar
  82. Peñuelas J, Gamon JA, Griffin KL, Field CB (1993) Assessing community type, plant biomass, pigment composition, and photosynthetic efficiency of aquatic vegetation from spectral reflectance. Remote Sens Environ 46:110–118.  https://doi.org/10.1016/0034-4257(93)90088-F CrossRefGoogle Scholar
  83. Peñuelas J, Gamon JA, Fredeen AL et al (1994) Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves. Remote Sens Environ 48:135–146.  https://doi.org/10.1016/0034-4257(94)90136-8 CrossRefGoogle Scholar
  84. Peñuelas J, Pinol J, Ogaya R, Filella I (1997) Estimation of plant water concentration by the reflectance Water Index WI (R900/R970). Int J Remote Sens 18:2869–2875.  https://doi.org/10.1080/014311697217396 CrossRefGoogle Scholar
  85. Pimstein A, Karnieli A, Bonfil D (2007) Wheat and maize monitoring based on ground spectral measurements and multivariate data analysis. J Appl Remote Sens 1:13530CrossRefGoogle Scholar
  86. Pimstein A, Karnieli A, Bansal SK, Bonfil DJ (2011) Exploring remotely sensed technologies for monitoring wheat potassium and phosphorus using field spectroscopy. F Crop Res 121:125–135CrossRefGoogle Scholar
  87. Ponzoni FJ, De JL, Goncalves M (1999) Spectral features associated with nitrogen, phosphorus, and potassium deficiencies in Eucalyptus saligna seedling leaves. Int J Remote Sens 20:2249–2264CrossRefGoogle Scholar
  88. Prasad B, Carver BF, Stone ML et al (2007) Genetic analysis of indirect selection for winter wheat grain yield using spectral reflectance indices. Crop Sci 47:1416–1425.  https://doi.org/10.2135/cropsci2006.08.0546 CrossRefGoogle Scholar
  89. Pu R, Ge S, Kelly NM, Gong P (2003) Spectral absorption features as indicators of water status in coast live oak (Quercus agrifolia ) leaves. Int J Remote Sens 24:1799–1810.  https://doi.org/10.1080/01431160210155965 CrossRefGoogle Scholar
  90. Ramoelo A, Skidmore AK, Cho MA et al (2012) Regional estimation of savanna grass nitrogen using the red-edge band of the spaceborne RapidEye sensor. Int J Appl Earth Obs Geoinf 19:151–162CrossRefGoogle Scholar
  91. Ramoelo A, Skidmore AK, Cho MA et al (2013) Non-linear partial least square regression increases the estimation accuracy of grass nitrogen and phosphorus using in situ hyperspectral and environmental data. ISPRS J Photogramm Remote Sens 82:27–40CrossRefGoogle Scholar
  92. Ranjan R, Chopra UK, Sahoo RN et al (2012) Assessment of plant nitrogen stress in wheat (Triticum aestivum L.) through hyperspectral indices. Int J Remote Sens 33:6342–6360.  https://doi.org/10.1080/01431161.2012.687473 CrossRefGoogle Scholar
  93. Ribeiro da Luz B (2006) Attenuated total reflectance spectroscopy of plant leaves: a tool for ecological and botanical studies. New Phytol 172:305–318.  https://doi.org/10.1111/j.1469-8137.2006.01823.x CrossRefGoogle Scholar
  94. Ribeiro da Luz B, Crowley JK (2007) Spectral reflectance and emissivity features of broad leaf plants: prospects for remote sensing in the thermal infrared (8.0–14.0 μm). Remote Sens Environ 109:393–405.  https://doi.org/10.1016/j.rse.2007.01.008 CrossRefGoogle Scholar
  95. Rouse JW, Haas RH, Schell JA et al (1974) Monitoring the vernal advancements and retrogradation. Texas A M Univ, TexasGoogle Scholar
  96. Salisbury JW (1986) Preliminary measurements of leaf spectral reflectance in the 8-14 μm region. Int J Remote Sens 7:1879–1886CrossRefGoogle Scholar
  97. Salisbury JW, Milton NM (1988) Thermal infrared (2.5-to 13.5-μm) directional hemispherical reflectance of leaves. Photogramm Eng Remote Sensing 54:1301–1304Google Scholar
  98. Samborski SM, Tremblay N, Fallon E (2009) Strategies to make use of plant sensors-based diagnostic information for nitrogen recommendations. Agron J 101:800–816CrossRefGoogle Scholar
  99. Sepulcre-Cantó G, Zarco-Tejada PJ, Jiménez-Muñoz JC et al (2006) Detection of water stress in an olive orchard with thermal remote sensing imagery. Agric For Meteorol 136:31–44.  https://doi.org/10.1016/j.agrformet.2006.01.008 CrossRefGoogle Scholar
  100. Serrano L, Peñuelas J, Ustin SL (2002) Remote sensing of nitrogen and lignin in Mediterranean vegetation from AVIRIS data. Remote Sens Environ 81:355–364.  https://doi.org/10.1016/S0034-4257(02)00011-1 CrossRefGoogle Scholar
  101. Sims DA, Gamon JA (2002) Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens Environ 81:337–354.  https://doi.org/10.1016/S0034-4257(02)00010-X CrossRefGoogle Scholar
  102. Sinclair TR, Ludlow MM (1985) Who taught plants thermodynamics? The unfulfilled potential of plant water potential. Funct Plant Biol 12:213–217Google Scholar
  103. Steele M, Gitelson AA, Rundquist D (2008) Nondestructive estimation of leaf chlorophyll content in grapes. Am J Enol Vitic 59:299–305Google Scholar
  104. Stimson HC, Breshears DD, Ustin SL, Kefauver SC (2005) Spectral sensing of foliar water conditions in two co-occurring conifer species: Pinus edulis and Juniperus monosperma. Remote Sens Environ 96:108–118.  https://doi.org/10.1016/j.rse.2004.12.007 CrossRefGoogle Scholar
  105. Strauss SY, Zangerl AR (2002) Plant-insect interactions in terrestrial ecosystems. Plant-animal interactions: an evolutionary approach 77–106Google Scholar
  106. Thomas EV, Haaland DM (1990) Comparison of multivariate calibration methods for quantitative spectral analysis. Anal Chem 62:1091–1099.  https://doi.org/10.1021/ac00209a024 CrossRefGoogle Scholar
  107. Tucker CJ (1980) Remote sensing of leaf water content in the near infrared. Remote Sens Environ 10:23–32.  https://doi.org/10.1016/0034-4257(80)90096-6 CrossRefGoogle Scholar
  108. Ullah S, Skidmore AK, Naeem M, Schlerf M (2012) An accurate retrieval of leaf water content from mid to thermal infrared spectra using continuous wavelet analysis. Sci Total Environ 437:145–152.  https://doi.org/10.1016/j.scitotenv.2012.08.025 CrossRefPubMedGoogle Scholar
  109. Ullah S, Skidmore AK, Groen TA, Schlerf M (2013) Evaluation of three proposed indices for the retrieval of leaf water content from the mid-wave infrared (2–6μm) spectra. Agric For Meteorol 171–172:65–71.  https://doi.org/10.1016/j.agrformet.2012.11.014 CrossRefGoogle Scholar
  110. Ullah S, Skidmore AK, Ramoelo A et al (2014) Retrieval of leaf water content spanning the visible to thermal infrared spectra. ISPRS J Photogramm Remote Sens 93:56–64.  https://doi.org/10.1016/j.isprsjprs.2014.04.005 CrossRefGoogle Scholar
  111. Ustin SL, Roberts DA, Pinzón J et al (1998) Estimating canopy water content of chaparral shrubs using optical methods. Remote Sens Environ 65:280–291.  https://doi.org/10.1016/S0034-4257(98)00038-8 CrossRefGoogle Scholar
  112. Vaiphasa C, Ongsomwang S, Vaiphasa T, Skidmore AK (2005) Tropical mangrove species discrimination using hyperspectral data: a laboratory study. Estuar Coast Shelf Sci 65:371–379.  https://doi.org/10.1016/j.ecss.2005.06.014 CrossRefGoogle Scholar
  113. van Leeuwen WJD, Huete AR (1996) Effects of standing litter on the biophysical interpretation of plant canopies with spectral indices. Remote Sens Environ 55:123–138CrossRefGoogle Scholar
  114. Wang L, Qu JJ (2007) NMDI: a normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote sensing. Geophys Res Lett 34:1–5Google Scholar
  115. Wiegand CL, Richardson AJ, Escobar DE, Gerbermann AH (1991) Vegetation indices in crop assessments. Remote Sens Environ 35:105–119CrossRefGoogle Scholar
  116. Yanli L, Qiang L, Shaolan H et al (2015) Prediction of nitrogen and phosphorus contents in citrus leaves based on hyperspectral imaging. Int J Agric Biol Eng 8:80Google Scholar
  117. Zarco-Tejada PJ, Miller JR, Noland TL et al (2001) Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data. IEEE Trans Geosci Remote Sens 39:1491–1507.  https://doi.org/10.1109/36.934080 CrossRefGoogle Scholar
  118. Zarco-Tejada PJ, Rueda CA, Ustin SL (2003) Water content estimation in vegetation with MODIS reflectance data and model inversion methods. Remote Sens Environ 85:109–124CrossRefGoogle Scholar
  119. Zarco-Tejada PJ, Miller JR, Morales A et al (2004) Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops. Remote Sens Environ 90:463–476CrossRefGoogle Scholar
  120. Zhang X, Liu F, He Y, Gong X (2013) Detecting macronutrients content and distribution in oilseed rape leaves based on hyperspectral imaging. Biosyst Eng 115:56–65.  https://doi.org/10.1016/j.biosystemseng.2013.02.007 CrossRefGoogle Scholar
  121. Zhao D, Raja Reddy K, Kakani VG et al (2003) Corn (Zea mays L.) growth, leaf pigment concentration, photosynthesis and leaf hyperspectral reflectance properties as affected by nitrogen supply. Plant Soil 257:205–218.  https://doi.org/10.1023/A:1026233732507 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.ICAR-Central Coastal Agricultural Research InstituteOld GoaIndia
  2. 2.National Remote Sensing CentreHyderabadIndia

Personalised recommendations