Skip to main content

Bioaugmentation of Petroleum Hydrocarbon in Contaminated Soil: A Review

  • Chapter
  • First Online:

Abstract

The release of petroleum hydrocarbon products into the soil due to rapid industrialization and accidental spills poses a serious threat to soil as well as groundwater. These compounds are known as carcinogen and neurotic organic pollutants which cause serious risk to human health and ecosystem. The introduced of bioaugmentation is one of the promising strategy, inexpensive and clean in situ bioremediation due to noninvasive and the selected of hydrocarbon-degrading microorganisms added into the soil can accelerate the degradation capacity of organic pollutants together with indigenous microbial population in the soil. This technique produced a maximum biodegradative capacity of organic pollutants in the soil. To demonstrate the potential of bioaugmentation in soil contaminated with petroleum hydrocarbon, many researchers studied the parameters to determine the optimal degradation conditions. In this chapter, we reviewed the experimental findings and the process of bioaugmentation of hydrocarbon-polluted soil by several selected bacterial strains that were isolated from previous studies around the world.

This review focuses on the parameters affecting the bioaugmentation process by abiotic and biotic factors. The various environmental parameters monitored are temperature, moisture pH, oxygen, and nutrient levels. Other factors include the contention between indigenous and exogenous microorganisms in utilizing carbon sources and the effects of antagonistic and synergistic interactions, and these interactions potentially change the number of cells augmented in the soil. Recent studies show that mixed cultures were more successful in degrading hydrocarbons than the single strains. Therefore the best technique and approach for bioaugmentation of soil contaminated with petroleum hydrocarbons will be highlighted and discussed in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aguilera F, Mendez J, Pasaro E, Laffon B (2010) Review on the effects of exposure to spilled oils

    Google Scholar 

  • Alvarez PJJ, Illman W (2006) Bioremediation and natural attenuation of groundwater contaminants: process fundamentals and mathematical models. Wiley, Hoboken

    Google Scholar 

  • April TM, Foght JM, Currah RS (2000) Hydrocarbon- degrading filamentous fungi isolated from flare pit soils in northern and western Canada. Can J Microbiol 46(1):38–49

    Article  CAS  PubMed  Google Scholar 

  • Atlas RM (1988) Microbiology fundamentals and applications, 2nd edn. Macmillan Publishing Company, New York, pp 106–110

    Google Scholar 

  • Atlas RM, Bartha R (1973) Simulated biodegradation of oil slicks using oleophilic fertilisers. Environ Sci Technol 7:538–541

    Article  CAS  PubMed  Google Scholar 

  • Barr DP, Aust SD (1994) Pollutant degradation by white rot fungi. Rev Environ Contam Toxicol 138:49–57

    CAS  PubMed  Google Scholar 

  • Bento FM, Camargo FAO, Okeke BC, Frankenberger WT (2005) Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresour Technol 96:1049–1055

    Article  CAS  PubMed  Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74:63–67

    Article  CAS  Google Scholar 

  • Børresen M, Rike A (2007) Effects of nutrient content, moisture content and salinity on mineralization of hexadecane in an Arctic soil. Cold Reg Sci Technol 48(2):129–138

    Article  Google Scholar 

  • Bossert I, Bartha R (1984) The treatment and disposal of petroleum wastes. In: Atlas RM (ed) Petroleum Microbiology. Macmillan, New York, pp 553–578

    Google Scholar 

  • Budavari S (1996) The Merck index: an encyclopedia of chemicals, drugs and biological, 12th edn. NJ Merck, White house Station

    Google Scholar 

  • Carter SR, Jewell WJ (1993) Biotransformation of tetrachloroethylene by anaerobic attached films at low temperatures. Water Res 27:607–615

    Article  CAS  Google Scholar 

  • Chaillan F, Le Fleche A, Bury E, Phantavonga Y, Grimontb P, Saliotc A, Oudot J (2004) Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms. Res Microbiol 155(7):587–595

    Article  CAS  PubMed  Google Scholar 

  • Chaillan F, Chaîneau CH, Point V, Saliot A, Oudot J (2006) Factors inhibiting bioremediation of soil contaminated with weathered oils and drill cuttings. Environ Pollut 144(1):255–265

    Article  CAS  PubMed  Google Scholar 

  • Chaineau CH, Rougeux G, Yespremain C, Oudot J (2005) Effects of nutrient concentration on the biodegradation of crude oil and associated microbial populations in the soil. Soil boil. Biochemist 37:1490–1497

    CAS  Google Scholar 

  • Chang LK, Ibrahin D, Omar IC (2011) A laboratory scale bioaugmentation of Tapis crude oil contaminated soil by bioaugmentation of Acinetobacter baumannii T30C. Afr J Microbiol Res 5(18):2609–2615

    Article  CAS  Google Scholar 

  • Chen WM, Tang YQ, Mori K, Wu XL (2012) Distribution of culturable endophytic bacteria in aquatic plants and their potential for bioremediation in polluted waters. Aquat Biol 15:99–110

    Article  Google Scholar 

  • Choi SC, Kwon KK, Sohn JH, Kim SJ (2002) Evaluation of fertilizer additions to stimulate oil biodegradation in sand seashore mescocosms. J Microbiol Biotechnol 12:431–436

    Google Scholar 

  • Cole GM (1994) Assessment and remediation of petroleum contaminated site. Lewis Publishers, London

    Google Scholar 

  • Dams RI, Paton G, Killham K (2007) Bioaugmentation of pentachlorophenol in soil and hydroponic system. Int Biodeterior Biodegrad 60:171–177

    Article  CAS  Google Scholar 

  • Das K, Mukherjee AK (2007) Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India. Bioresour Technol 98:1339–1345

    Article  CAS  PubMed  Google Scholar 

  • Davis GB, Laslett DR, Patterson BM, Johnsto CD (2005) Quantifying the effects of oxygen diffusion on biodegradation rate estimated from respiration tests. J Contam Hydrol 07(1–2):91–100

    Google Scholar 

  • Delille D, Coulon F, Pelletier E (2004) Effects of temperature warming during a bioremediation study of natural and nutrient-amended hydrocarbon-contaminated sub-Antarctic soils. Cold Reg Sci Technol 40(1–2):61–70

    Article  Google Scholar 

  • Devinny J, Chang SH (2000) Bioaugmentation for soil bioremediation. In: Wise DL, Trantolo D (eds) Bioremediation of contaminated soils. Dekker, New York, pp 465–488

    Google Scholar 

  • De-qing S, Jian Z, Zhao-long G, Jian D, Tian-li W, Murygina V, Kalyuzhnyi S (2007) Bioremediation of oil sludge in Shengli oilfield. Water Air Soil Pollu 185:177–184

    Article  CAS  Google Scholar 

  • Dibble JT, Bartha R (1979) Effect of environmental parameters on the biodegradation of oil sludge. Appl Environ Microbiol 37(4):729–739

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dineen D, Slater JP, Jicks P, Holland I (1990). In situ biological remediation of petroleum hydrocarbons in unsaturated soils. In: Kostecki PT, Calabrese EJ (eds) Hydrocarbon contaminated soils and ground water: analysis, fate, environmental and public health effects, remediation, vol 1. Lewis Publishers, Chelsea, pp 177–187

    Google Scholar 

  • Dupon RR, Doucette WJ, Hinchee RE (1991) Assessment of in situ bioremediation potential and the application of bioventing at a fuel contaminated site. In: Hinchee RE, Olfenbuttel RF (eds) In situ bioremediation, application and investigations for hydrocarbons and contaminated site remediation. Butterworth Heinemann, Boston, pp 262–282

    Google Scholar 

  • Edwards EA, Cox EE (1997) Field and laboratory evidence of sequential aerobic chlorinated solvent biodegradation. In situ and on site bioreclamation: volume 3. Battelle Press, Columbus

    Google Scholar 

  • Ellis B, Balba T, Theile P (2012) Comparative bioremediation of petroleum hydrocarbon-contaminated soil by biostimulation, bioaugmentation and surfactant addition. Indian J Environ Health 1(5):637–650

    Google Scholar 

  • El Fantroussi S, Agathos SN (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8:268–275

    Article  CAS  PubMed  Google Scholar 

  • EPA (United State Environmental Protection Agency) (2008) Contaminated sediment in water. Retrieve from URL: http://www.epa.gov/waterscience/cs/abou tcs/index.html

  • Fagan MR (1994) Peroxygens enhance biological treatment. Environ Prot 5(9):45–52

    Google Scholar 

  • Farinazleen MG, Raja NZ, Abu BS, Mahiran B (2004) Biodegradation of hydrocarbons in soil by microbial consortium. Int J Biodeterior Biodegrad 54:61–67

    Article  CAS  Google Scholar 

  • Fatima MB, Flavio AOC, Benedict O, William TFJ (2003) Bioremediation of soil contaminate by diesel oil. Braz J Microbiol 34(Suppl 1):65–68

    Google Scholar 

  • Ferguson SH, Franzmann PD, Revill AT, Snape I, Rayner JL (2003) The effects of nitrogen and water on mineralization of hydrocarbons in diesel-contaminated terrestrial Antarctic soils. Cold Reg Sci Technol 37:197–212

    Article  Google Scholar 

  • Field JA, de Jong E, Feijoo Costa G, de Bont JA (1992) Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white rot fungi. Appl Environ Microbiol 58(7):2219–2226

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fiorenza S, Duston KL, Ward CH (1991) Decision making-is bioremediation a viable option? J Hazard Mater 28(1):171–183

    Article  CAS  Google Scholar 

  • Firestone MK, Miya RK (2001) Enhanced phenanthrene biodegradation in soil by slender oat root exudates and root debris. J Environ Qual 30(6):1911–1918

    Article  PubMed  Google Scholar 

  • Floodgate G (1984) The fate of Petroleum in Marine Ecosystems. In: Atlas RM (ed) Petroleum microbiology. Macmillion, New York, pp 355–398

    Google Scholar 

  • Franzetti A, Caredda P, Ruggeri C, La Colla L, Tamburini E, Papacchini M, Bestetti G (2009) Potential application of surface active compounds by Gordonia sp. strain BS29 in soil remediation technologies. Chemosphere 75:801–807

    Article  CAS  PubMed  Google Scholar 

  • Franzmann PD, Zapia LR, Power TR, Davis GB, Patterson BM (1999) Microbial mineralization of benzene and characterization of microbial biomass in soil above hydrocarbon contaminated groundwater. FEMS Microbiol Ecol 30(1):67–76

    Article  CAS  Google Scholar 

  • Fusey P, Oudot J (1984) Relative influence of physical removal and biodegradation in the depuration of petroleum contaminated seashore sediments. Mar Pollut Bull 15:136–141

    Article  CAS  Google Scholar 

  • Garon D, Sage L, Wouessidjewe D, Seigle-Murandi F (2004) Enhanced degradation of fluorene in soil slurry by Absidia cylindrospora and maltosyl-cyclodextrin. Chemosphere 56:159–166

    Article  CAS  PubMed  Google Scholar 

  • Gentry TJ, Newby DT, Josephson KL, Pepper IL (2001) Soil microbial population dynamics following bioaugmentation with a 3-chlorobenzoate-degrading bacterial culture. Biodegradation 349:349–357

    Article  Google Scholar 

  • Gentry TJ, Rensing C, Pepper IL (2004) New approaches for bioaugmentation as a remediation technology. Crit Rev Environ Sci Technol 34:447–494

    Article  CAS  Google Scholar 

  • Gogoi BK, Dutta NN, Goswami TR, Krishna M (2003) A case study of bioremediation of petroleum-hydrocarbon contaminated soil at a crude oil spill site. Adv Environ Res 7:767–782

    Article  CAS  Google Scholar 

  • Grishchenkov VG, Townsend RT, Mcdonald TJ, Autenrieth RL, Bonner JS, Boronin AM (2000) Degradation of petroleum hydrocarbons by facultative anaerobic bacteria under aerobic and anaerobic conditions. Process Biochem 35:889–896

    Article  CAS  Google Scholar 

  • Gunkel W (1967) Experimentell-~kolo~ische Unteauchmgen Über die limitierenden Faktoren des rnikrobiellen OLabbaues in Marinen Milieu. Helgol Wiss-Meeresunters 15(2):10–224

    Google Scholar 

  • Hambrick GA III, De Laune RD, Patrick WH Jr (1980) Effect of estuarine sediment pH and oxidation-reduction potential on microbial hydrocarbon degradation. Appl Environ Microbiol 40:365–369

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayden NJ, Voice TC, Annable MD, Wallace RB (1994) Change in gasoline constituent mass transfer during soil venting. J Environ Eng 120:1598–1614

    Article  CAS  Google Scholar 

  • Heinaru E, Merimaa M, Viggor S, Lehiste M, Leito I, Truu J, Heinaru A (2005) Biodegradation efficiency of functionally important populations selected for bioaugmentation in phenol- and oil-polluted area. FEMS Microbiol Ecol 51:363–373

    Article  CAS  PubMed  Google Scholar 

  • Holliger C, Gaspard S, Glod G, Heijman C, Schumacher W, Schwarzenbach RP, Vazquez F (1997) Contaminated environments in the subsurface and bioremediation: organic contaminants. FEMS Microbiol Rev 20:517–523

    Article  CAS  PubMed  Google Scholar 

  • Hommel RK (1990) Formation and phylogenetic role of biosurfactants. J Appl Microbiol 89(1):158–119

    Google Scholar 

  • Hong Q, Zhang Z, Hong Y, Li S (2007) A microcosm study on bioremediation of fenitrothioncontaminated soil using Burkholderia sp. FDS-1. Int Biodeterior Biodegrad 59:55–61

    Article  CAS  Google Scholar 

  • Hosokawa R, Nagai M, Morikawa M, Okuyama H (2009) Autochthonous bioaugmentation and its possible application to oil spills. World J Microbiol Biotechnol 25:1519–1528

    Article  CAS  Google Scholar 

  • Iwamoto T, Nasu M (2001) Current bioremediation practice and perspective. J Biosci Bioeng 92:1–8

    Article  CAS  PubMed  Google Scholar 

  • Jacques RJS, Okeke BC, Bento FM, Teixeira AS, Peralba MCR, Comargo FAO (2008) Microbial consortium bioaugmentation of a polycyclic aromatic hydrocarbons contaminated soil. Bioresour Technol 99:2637–2643

    Article  CAS  PubMed  Google Scholar 

  • Jernberg C, Jansson JK (2002) Impact of 4-chlorophenol contamination and/or inoculation with the 4-chlorophenol-degrading strain, Arthrobacter chlorophenolicus A6L, on soil bacterial community structure. FEMS Microbiol Ecol 42:387–397

    Article  CAS  PubMed  Google Scholar 

  • Karamalidis AK, Evangelou AC, Karabika E, Koukkou AL, Drainas C, Voudrias EA (2010) Laboratory scale bioremediation of petroleum-contaminated soil by indigenous microorganisms and added Pseudomonas aeruginosa strain Spet. Bioresour Technol 101(16):6545–6552

    Google Scholar 

  • Khan FI, Husain T (2002) Evaluation of contaminated sites using risk based monitored natural attenuation, chemical engineering progress AIChE, USA, January, pp 34–44

    Google Scholar 

  • Lakha SS, Miller M, Campbell RG, Elahimanesh KSP, Hart MM, Trevors JT (2005) Microbial gene expression in soil: methods, applications and challenges. J Microbiol Methods 63(1):1–19

    Article  CAS  Google Scholar 

  • Leahy JG, Somerville CC, Cunningham KA, Adamantiades GA, Byrd JJ, Colwell RR (1990) Hydrocarbon mineralization in sediments and plasmid incidence in sediment bacteria from the campeche bank. Appl Environ Microbiol 56(6):1565–1570

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leeson A, Hinchee RE (1996a) Principles and practices of bioventing, vol 1: bioventing principles. Vol 2: bioventing design. (vol 1) and 110 pp. (vol 2) plus appendices. Battelle Press, Columbus

    Google Scholar 

  • Leeson A, Hinchee RE (1996b) Soil Bioventing. CRC Press, Boca Raton

    Google Scholar 

  • Leys NM, Bastiaens L, Verstraete W, Springael D (2005) Influence of the carbon/nitrogen/phosphorus ratio on polycyclic aromatic hydrocarbon degradation by Mycobacterium and Sphingomonas in soil. Appl Microbiol Biotechnol 66(6):726–736

    Article  CAS  PubMed  Google Scholar 

  • Maine MA, Duarte MV, Suné NL (2001) Cadmium uptake by Pistia stratiotes. Water Res 35:2629e2634

    Article  Google Scholar 

  • Malik A (2007) Environmental challenge vis a vis opportunity: the case of water hyacinth. Environ Int 33:122–138

    Article  CAS  PubMed  Google Scholar 

  • Malina G, Grotenhuis JTC, Rulkens WH (1999) The effect of temperature on bioventing of soil contaminated with toluene and decane. J Soil Contam 8:455–480

    Article  CAS  Google Scholar 

  • Mancera-Lo’pez ME, Esparza-Garcı’a F, Cha’vez-Go’mez B, Rodrı’guez-Va’zquez R, Saucedo-Castanˇeda G, BarreraCorte’s J (2008) Bioremediation of an aged hydrocarbon contaminated soil by a combined system of biostimulation-bioaugmentation with filamentous fungi. Int Biodeterior Biodegrad 61:151–160

    Article  CAS  Google Scholar 

  • Mandal AK, Sarma PM, Jeyaseelan CP, Channashettar VA, Singh B, Lal B, Datta J (2012) Large scale bioremediation of petroleum hydrocarbon contaminated waste at Indian oil refineries : case studies. Int J Life Sci Pharma Res 2(4):114–128

    CAS  Google Scholar 

  • Manli W, Warren AD, Wei L, Wang X, Yang Q, Wang T, Xu L, Zhang M, Chen L (2016) Bioaugmentation and biostimulation of hydrocarbon degradation and the microbial community in a petroleumcontaminated soil. Int Biodeterior Biodegrad 107:158–164

    Article  CAS  Google Scholar 

  • Margesin R, Labbe D, Schninner F, Greer CW, Whyte LG (2003) Characterization of hydrocarbon degrading microbial populations in contaminated and pristine contaminated soils. Appl Environ Microbiol 69(6):3985–3092

    Article  CAS  Google Scholar 

  • McFarland MJ, Qiu ZJ, Sims JL, Randolph ME, Sims RC (1992) Remediation of petroleum impacted soils in fungal compost bioreactors. Water Sci Technol 25(3):197–206

    Article  CAS  Google Scholar 

  • Miya RK, Firestone MK (2001) Enhanced phenanthrene biodegradation in soil by slender oat root exudates and root debris. J Environ Qual 30(6):1911–1918

    Article  CAS  PubMed  Google Scholar 

  • Muñoz R, Guieysse B, Mattiasson B (2003) Phenanthrene biodegradation by an algal-bacterial consortium in two-phase partitioning bioreactors. Appl Microbiol Biotechnol 61(3):261–267

    Google Scholar 

  • NCEPI National Center For Environmental Publications & Informations. U.S.EPA

    Google Scholar 

  • Nedunuri KV, Gouindaraju RS, Banks MK, Schwab AP, Chen Z (2000) Phytoremediation of aged petroleum sludge: effect of inorganic fertilizer. J Environ Eng 126:395–403

    Article  Google Scholar 

  • Niu X, Tang W, Huang W, Ren G, Wang Q, Luo D, Xiao Y, Yang S, Wang F, Lu BR, Gao F, Lu T, Liu Y (2008) RNAi-directed down-regulation of OsBADH2 results in aroma (2-acetyl-1-pyrroline) production in rice (Oryza sativa L.). BMC Plant Biol 8:100. https://doi.org/10.1186/1471-2229-8-100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okoh AI (2006) Biodegradation alternative in the cleanup of petroleum hydrocarbon pollutants. Biotechnol Mol Biol Rev 1(2):38–50

    Google Scholar 

  • Oudot I, Merlin FX, Pinvidic P (1998) Weathering rates of oil components in a bioremediation experiment in estuarine sediments. Mar Environ Res 45:113–125

    Google Scholar 

  • Parr IL, Claff RE, Kocurek DS, Lowry JC (1994) Inter laboratory study of analytical methods for petroleum hydrocarbons. In: O’Shay TA, Hoddinott KB (eds) Analysis of soi1- contaminated with petroleum constituents. ASTM Publication (Code Number 041) 122 10–38. ASTM Philadelphia, PA. U.S.A, pp 53–60

    Google Scholar 

  • Pedersen TA, Curtis JT (1991) Soil vapor extraction technology: reference handbook. USEPA rep. 540/2-1/003. USEPA, Washington, DC

    Google Scholar 

  • Pelletier E, Delille D, Coulon F (2004) Effects of temperature warming during a bioremediation study of natural and nutrient-amended hydrocarbon-contaminated sub-Antarctic soils. Cold Reg Sci Technol 40(1–2):61–70

    Google Scholar 

  • Peressutti SR, Alvarez HM, Pucci OH (2003) Dynamics of hydrocarbon-degrading 47 bacteriocenosis of an experimental oil pollution in Patagonian soil. Int Biodeterior Biodegrad 52:21–30

    Article  CAS  Google Scholar 

  • Powell SM, Harvey PM, Stark JS, Snape I, Riddle MJ (2007) Biodegradation of petroleum products in experimental plots in Antarctic marine sediments is location dependent. Mar Pollut Bull 54:434–440

    Article  CAS  PubMed  Google Scholar 

  • Pramer D, Bartha R (1972) Preparation and processing of soil samples for biodegradation studies. Environ Lett 2:217–224

    Article  Google Scholar 

  • RAAG (2000) Evaluation of risk based corrective action model, Remediation Alternative Assessment Group, Memorial University of Newfoundland, St John’s, NF, Canada

    Google Scholar 

  • Rahman KSM, Thahira-Rahman J, Lakshmanaperumalsamy P, Bana IM (2002) Towards efficient crude oil degradation by a mixed bacterial consortium. Bioresour Technol 85:257–261

    Article  CAS  PubMed  Google Scholar 

  • Reddy KR, Saichek RE (2003) Effect of soil type on electrokinetic removal of phenanthrene using surfactants and co-solvents. J Environ Eng 129(4):336–346

    Article  CAS  Google Scholar 

  • Ronen Z, Vasiluk L, Abeliovih A, Nejidat A (2000) Activity and survival of tribromophenol-degrading bacteria in a contaminated desert soil. Soil Biol Biochem 32:1643–1650

    Article  CAS  Google Scholar 

  • Santos VL, Andrea de SM, Braga DT, Santoro MM (2009) Phenol degradation by Aureobasidium pullulans FE13 isolated from industrial effluents. J Hazard Material 16:1413–1420

    Article  CAS  Google Scholar 

  • Saval S (1998) Biotecnologia, vol 3, p 71

    Google Scholar 

  • Scragg A (2005) Environmental biotechnology, 2nd edn. Oxford University Press, Oxford, pp 179–182

    Google Scholar 

  • Sharma A, Kumar P, Rehman MB (2014) Biodegradation of diesel hydrocarbon in soil by bioaugmentation of Pseudomonas aeruginosa: a laboratory scale study. Int J Environ Bioremediat Biodegrad 2.4 : 202–212

    Google Scholar 

  • Silva IS, Grossman M, Durrant LR (2009) Degradation of polycyclic aromatic hydrocarbons (2–7 rings) under microaerobic and very-low-oxygen conditions by soil fungi. Int Biodeterior Biodegrad 63(2):224–229

    Article  CAS  Google Scholar 

  • Sims R, Bass J (1984) Review of in-place matment techniques for contaminated surface soils, vol 1. Technical evaluation. EPA report no. EPA-540n-84-003a

    Google Scholar 

  • Singh H (2006) Mycoremediation: fungal bioremediation. Wiley-Interscience, New York

    Book  Google Scholar 

  • Song HG, Wang X, Bartha R (1990) Bioremediation potential of terrestrial fuel spills. Appl Environ Microbiol 56(3):652–656

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stallwood B, Shears J, Williams PA, Hughes KA (2005) Low temperature bioremediation of oil-contaminated soil using biostimulation and bioaugmentation with a Pseudomonas sp. from maritime Antarctica. J Appl Microbiol 99:794–802

    Article  CAS  PubMed  Google Scholar 

  • Testa SM, Winegardner D (1991) Restoration of petroleum-contaminated aquifers. Lewis Publishers, London

    Google Scholar 

  • Throne-Holst M, Wentzel A, Ellingsen TE, Kotlas HK, Zotchev SB (2007) Identification of novel genes involved in long-chain n-alkane degradation by Acinetobacter sp. strain DSM 17874. Appl Environ Microbiol 73(10):3327–3332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Townsend GT, Prince RC, Suflita JM (2004) Anaerobic biodegradation of alicyclic constituents of gasoline and natural gas condensate by bacteria from an anoxic aquifer. FEMS Microbiol Ecol 49:129–135

    Article  CAS  PubMed  Google Scholar 

  • Ueno A, Hasanuzzaman M, Yumoyo I, Okuyama H (2006) Verification of degradation of n-alkanes in diesel oil by Pseudomonas aeruginosa strain Wat G in soil microcosms. Curr Microbiol 52:182–185

    Article  CAS  PubMed  Google Scholar 

  • USEPA (1995) Abstracts of remediation case studies. Office of Solid Waste and Emergency Response, US Environmental Protection Agency. Publication number EPA-542-R-95-001, Washington, DC

    Google Scholar 

  • USEPA (2004) Treatment technologies for site cleanup: annual status report. EPA-542-R-03-009 U.S. Environment Protection Agency, Washington, DC

    Google Scholar 

  • Vasudevan N, Rajaram P (2001) Bioremediation of oil sludgecontaminated soil. Environ Int 26:409–411

    Google Scholar 

  • Vecchioli GI, Dei Panno MT, Painceira MT (1990) Use of selected autochthonous soil bacteria to enhance degradation of hydrocarbons in soil. Environ Pollut 67:249–258

    Article  CAS  PubMed  Google Scholar 

  • Verstraete W, Vanloocke R, DeBorger R, Verlindne A (1975) Modeling of the breakdown and the mobilization of hydrocarbons in unsaturated soil layers. In: Sharpley JM, Kalpan AM (eds) Proceedings of 3rd international biodegradation symposium. Applied Science Publishers, London, pp 98–112

    Google Scholar 

  • Vidali M (2001) Bioremediation an overview. Pure Appl Chem 73(7):1163–1172

    Article  CAS  Google Scholar 

  • Vogel TM (1996) Bioaugmentation as a soil bioremediation approach. Curr Opin Biotechnol 7:311–316

    Article  CAS  PubMed  Google Scholar 

  • Wang ZD, Fingas M, Blenkinsopp S, Sergy G, Landriault M, Sigouin L, Lambert P (1998) Study of 25 year old Nipis Oil Spill: persistence of oil residues and comparisons between surface and subsurface sediments. Environ Sci Technol 32:2222–2232

    Article  CAS  Google Scholar 

  • Warshawsky D, Cody T, Radike M, Reilman R, Schumann B, LaDow K, Schneider J (1995) Biotransformation of benzo[a]pyrene and other polycyclic aromatic hydrocarbons and heterocyclic analogs by several green algae and other algal species under gold and white light. Chemico Biol Interact 97(2):131–148

    Article  CAS  Google Scholar 

  • Yakimov MM, Timmis KN, Golyshin PN (2007) Obligate oil degrading marine bacteria. Curr Opin Biotechnol 18:257–266

    Article  CAS  PubMed  Google Scholar 

  • Ying T, Luo YM, Sun MM, Liu ZJ, Li ZG, Christie P (2010) Effect of bioaugmentation by Paracoccus sp. strain HPD-2 on the soil microbial community and removal of polycyclic aromatic hydrocarbons from an aged contaminated soil. Bioresour Technol 101(10):3437–3443

    Article  CAS  Google Scholar 

  • Yu SH, Ke L, Wong YS, Tam NFY (2005) Degradation of polycyclic aromatic (PAHs) by a bacterial consortium enriched from mangrove sediments. Environ Int 32:149–154

    Article  CAS  Google Scholar 

  • Zaida N, Piakong MT (2017) Effectiveness of single and microbial consortium in bioaugmentation of oil sludge contaminated soil at different concentration levels: a laboratory scale. In: Proceeding of ICOFA; International Conference of Future Asian 2017

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nur Zaida, Z., Piakong, M.T. (2018). Bioaugmentation of Petroleum Hydrocarbon in Contaminated Soil: A Review. In: Kumar, V., Kumar, M., Prasad, R. (eds) Microbial Action on Hydrocarbons. Springer, Singapore. https://doi.org/10.1007/978-981-13-1840-5_17

Download citation

Publish with us

Policies and ethics