Skip to main content

Microbial Degradation of Hydrocarbons in the Environment: An Overview

  • Chapter
  • First Online:

Abstract

Biodegradation of hydrocarbons is a cost-effective technique that is based on highly dispersed microbes in soil and water capable of biodegrading hydrocarbons. Degradation is an effective method for remediation of petro-hydrocarbons and causes changes in nature and concentration of petro-compounds. Biodegradation is classified as the most important tool for eliminating the toxicity and for removing the hydrocarbons in the different environments such as soil, water, and soil sediment that are polluted by hydrocarbons. The microorganisms employed in degradation process must be aboriginal in polluted sites. Investigators have recently discovered a large number of microbial groups from the sediment, water, and soil that have been polluted by crude petroleum oil. These microorganisms were able to transform hydrocarbons to energy and biomass as well as biological waste by-products. A variety of microorganisms have such capability of cleaning up and remediating locations that polluted by hydrocarbons. The microorganisms that biodegrade hydrocarbons are widely dispersed within surface water, sediments, and soil habitats. The importance of these microorganisms in biodegrading hydrocarbons and their other natural organic residues in aquatic ecosystems, soil, and sediment has long been recognized. Transformation of organic contaminants by these microbes naturally occurs because these organisms are able to use organic contaminants for their energy and carbon requirement as well as for their development and propagation. The capability of particular microbes to biodegrade the petro-hydrocarbons appears to be an acclimatization and is managed by several ecological factors. Primarily, the presence of hydrocarbons may also affect the microorganism community owing to its different chemical nature.

Petro-hydrocarbon biodegradation, by employing several microbial groups, is based largely on the structure of these communities as well as their adaptation in hydrocarbon contaminants. Bacterial and fungal strains are the main organisms for such crude oil biodegradation. Bacteria play a predominant role within the marine ecosystem, while fungi are more effective within both freshwater and earthen environment. The adaptive microorganism groups, which were formerly exposed to the petroleum hydrocarbon pollution, display much great degradation potential that exceeds other groups which has not exposed to such pollution. The microbial adaptation mechanism involves physical adjustment as well as some genetic changes, which leads to mutations. The mutation genes associated with the plasmid DNA could cause frequency increase in the plasmid-bearing microbes. In addition, seeding petroleum-polluted water and soil using microorganisms that feed on hydrocarbons exhibits significant success. Biodegradation of complex hydrocarbon pollutants needs a particular combination of more than one type of microbial group. This is mainly due to the fact that a single microorganism can only metabolize a limited amount of hydrocarbon substrates. Thus, the mixed cultivation (consortium) and the extensive enzymatic abilities of the microbes are strongly desired to enhance hydrocarbon degradation ratio.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbasian F, Lockington R, Mallavarapu M, Naidu R (2015) A comprehensive review of aliphatic hydrocarbon biodegradation by bacteria. Appl Biochem Biotechnol 176(3):670–699

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Shafy HI (1992) Concentration of metals in the little Mourah Lake. Int Environ Manage Health 3(4):18–25

    Article  Google Scholar 

  • Abdel-Shafy HI, Farghaly MS (1995) Level of metals in the benthic algae of the Suez Canal. J Environ Protect Eng 21(1–4):5–14

    CAS  Google Scholar 

  • Abdel-Shafy HI, Kamel AH (2016) Groundwater in Egypt issue: resources, location, amount, contamination, protection, renewal, future overview. Egyptian J Chem 59(3):321–362

    Article  Google Scholar 

  • Abdel-Shafy HI, Mansour MSM (2016) A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet 25:107–123

    Article  Google Scholar 

  • Abdel-Shafy HI, Azzam AM, El-Gamal IM (1988) Studies on the degradation of synthetic detergents by sewage. Bull Environ Contam Toxicol 41(2):310–316

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Shafy HI, Abdel-Sabour MF, Farid MR (1994) Distribution pattern of metals in the environment of the little Lake. J Environ Protect Eng 20(1–4):5–16

    CAS  Google Scholar 

  • Alan S (2005) Environmental biotechnology, 2nd edn. Oxford University Press, pp 179–182

    Google Scholar 

  • Ali MIA, Khalil NM, El-Ghany MNA (2012) Biodegradation of some polycyclic aromatic hydrocarbons by Aspergillus terreus. Afr J Microbiol Res 6:3783–3790

    CAS  Google Scholar 

  • Amenu D (2014) Isolation of poly aromatic hydrocarbons (PAHs) degrading bacteria’s. Landmark Res J Med Med Sci 1:1–3

    Google Scholar 

  • Atlas RM, Philp J (eds) (2005) Bioremediation: applied microbial solutions for real-world environmental cleanup. American Society for Microbiology, Washington, DC, p 366

    Google Scholar 

  • Baboshin MA, Golovleva LA (2012) Aerobic bacterial degradation of polycyclic aromatic hydrocarbons (PAHs) and its kinetic aspects. Microbiol 81(6):639–650

    Article  CAS  Google Scholar 

  • Bamforth SM, Singleton I (2005) Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biotechnol 80:723–736

    Article  CAS  Google Scholar 

  • Bian XY, Mbadinga SM, Liu YF, Yang SZ, Liu JF, Ye RQ, Gu JD, Mu BZ (2015) Insights into the anaerobic biodegradation pathway of n-alkanes in oil reservoirs by detection of signature metabolites. Sci Rep 5:9801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boll M, Löffler C, Morris BE, Kung JW (2014) Anaerobic degradation of homocyclic aromatic compounds via arylcarboxyl-coenzyme A esters: organisms, strategies and key enzymes. Environ Microbiol 16(3):612–627

    Article  CAS  PubMed  Google Scholar 

  • Brassington KJ, Hough RL, Paton GI, Semple KT, Risdon GC, Crossley J, Hay I, Askari K, Pollard SJT (2007) Weathered hydrocarbon wastes: a risk management primer. Crit Rev Environ Sci Technol 37(3):199–232

    Article  CAS  Google Scholar 

  • Callaghan AV (2013) Enzymes involved in the anaerobic oxidation of n-alkanes: from methane to long chain paraffins. Front Microbiol 4:89–97

    Article  PubMed  PubMed Central  Google Scholar 

  • Cameotra SS, Singh P (2008) Bioremediation of oil sludge using crude biosurfactants. Int Biodeter Degrad 62(3):274–280

    Article  CAS  Google Scholar 

  • Chaillan F, le Fleche A, Bury E, Phantavong YH, Grimont P, Saliot A, Oudot J (2004) Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms. Res Microbiol 155:587–595

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary DK (2016) Molecular tools in petroleum hydrocarbon degradation: an overview. BAOJ Biotech 2:018

    Google Scholar 

  • Chen X, Liu M, Hu F, Mao X, Li H (2007) Contributions of soil micro-fauna (protozoa and nematodes) to rhizosphere ecological functions. Acta Ecol Sin 27:3132–3143

    Article  CAS  Google Scholar 

  • Chikere CB, Okpokwasili GC, Chikere BO (2011) Monitoring of microbial hydrocarbon remediation in the soil. Biotech 1(3):117–138

    Google Scholar 

  • Cottin NC, Merlin G (2007) Study of pyrene biodegradation capacity in two types of solid media. Sci Total Environ 380:116–123

    Article  CAS  Google Scholar 

  • Cunningham CJ, Ivshina IB, Lozinsky VI, Kuyukina MS, Philp JC (2004) Bioremediation of diesel contaminated soil by microorganisms immobilised in polyvinyl alcohol. Int Biodeter Biodegrad 54(2–3):167–174

    Article  CAS  Google Scholar 

  • Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011:941810. https://doi.org/10.4061/2011/941810

    Article  CAS  PubMed  Google Scholar 

  • Daverey A, Pakshirajan K (2009) Production of sophorolipids by the yeast Candida bombicola using simple and low cost fermentative media. Food Res Int 42(4):499–504

    Article  CAS  Google Scholar 

  • Díaz MP, Boyd KG, Grigson SJW, Burgess JG (2002) Biodegradation of crude oil across a wide range of salinities by an extremely halotolerant bacterial consortium MPD-M, immobilized onto polypropylene fibers. Biotechnol Bioeng 79(2):145–153

    Article  CAS  PubMed  Google Scholar 

  • Duran R, Cravo-Laureau C (2016) Role of environmental factors and microorganisms in determining the fate of polycyclic aromatic hydrocarbons in the marine environment. FEMS Microbiol Rev 40(6):814–830

    Google Scholar 

  • El-Tarabily KA (2002) Total microbial activity and microbial composition of a mangrove sediment are reduced by oil pollution at a site in the Arabian Gulf. Canadian J Microbiol 48(2):176–182

    Article  CAS  Google Scholar 

  • Fayed SE, Abdel-Shafy HI (1985) Accumulation of Cu, Zn Cd and Pb by aquatic macrophytes. J Environ Int 11:77–87

    Article  CAS  Google Scholar 

  • Fayed SE, Abdel-Shafy HI, Khalifa NM (1983) Accumulation of Cu, Zn, Cd, and Pb by Scenedesmus obliquus under non-growth conditions. J Environ Int 9(5):409–414

    Article  CAS  Google Scholar 

  • Fritsche W, Hofrichter M (2000) Aerobic degradation by microorganisms. In: Klein J (ed) Environmental processes-soil decontamination. Wiley-VCH, Weinheim, pp 146–155

    Google Scholar 

  • Fuchs G, Boll M, Heider J (2011) Microbial degradation of aromatic compounds-from one strategy to four. Nat Rev Microbiol 9(11):803–816

    Article  CAS  PubMed  Google Scholar 

  • Gieg LM, Fowler SJ, Berdugo-Clavijo C (2014) Syntrophic biodegradation of hydrocarbon contaminants. Curr Opin Biotechnol 27:21–29

    Article  CAS  PubMed  Google Scholar 

  • Hadibarata T, Teh ZC, Rubiyatno ZMMFA, Khudhair AB, Yusoff ARF, Salim MR, Hidayat T (2013) Identification of naphthalene metabolism by white rot fungus Pleurotus eryngii. Bioprocess Biosyst Eng 36:1455–1461

    Article  CAS  PubMed  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15

    Article  CAS  PubMed  Google Scholar 

  • Heider J (2007) Adding handles to unhandy substrates: anaerobic hydrocarbon activation mechanisms. Curr Opin Chem Biol 11(2):188–194

    Article  CAS  PubMed  Google Scholar 

  • Heider J, Schuhle K (2013) Anaerobic biodegradation of hydrocarbons including methane. In: Rosenberg E, DeLong EF, Lory S et al (eds) The prokaryotes: prokaryotic physiology and biochemistry. Springer, Berlin/Heidelberg, pp 605–634

    Chapter  Google Scholar 

  • Hesham AE, Wang Z, Zhang Y, Zhang J, Lv W, Yang M (2006) Isolation and identification of a yeast strain capable of degrading four and five ring aromatic hydrocarbons. Ann Mcrobiol 56:109–112

    Article  CAS  Google Scholar 

  • Ilori MO, Amobi CJ, Odocha AC (2005) Factors affecting biosurfactant production by oil degrading Aeromonas spp. isolated from a tropical environment. Chemosphere 61(7):985–992

    Article  CAS  PubMed  Google Scholar 

  • Jiménez N, Richnow HH, Vogt C, Treude T, Krueger M (2016) Methanogenic hydrocarbon degradation: evidence from field and laboratory studies. J Mol Microbiol Biotechnol 26(1–3):227–242

    Article  CAS  PubMed  Google Scholar 

  • Kiran GS, Hema TA, Gandhimathi R, Selvin J, Thomas TA, Rajeetha Ravji T, Natarajaseenivasan K (2009) Optimization and production of a biosurfactant from the sponge associated marine fungus Aspergillus ustus MSF3. Colloids Surf B 73(2):250–256

    Article  CAS  Google Scholar 

  • Kumar M, León V, De Sisto Materano A, Ilzins OA, Luis L (2008) Biosurfactant production and hydrocarbon degradation by halotolerant and thermotolerant Pseudomonas sp. World J Microbiol Biotechnol 24(7):1047–1057

    Article  CAS  Google Scholar 

  • Lawrence SJ (2006) Description, properties, and degradation of selected volatile organic compounds detected in ground water – a review of selected literature no. 2006–1338

    Google Scholar 

  • Leelaruji W, Buathong P, Kanngan P, Piamtongkamb R, Chulalaksananukul S, Wattayakorn G, Chulalaksananukul W (2013) Biodegradation of poly-aromatic hydrocarbons Aureobasidium pullulans var. melanogenum. In: Proceedings of the international conference of environmental science and technology, June 18–21, 2013, Nevsehir, Turkey, pp 18–21

    Google Scholar 

  • Leitao AL (2009) Potential of Penicillium species in the bioremediation field. Int J Environ Res Public Health 6:1393–1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loeher RC, Mc Millen SJ, Webster MT (2001) Predictions of biotreatability and actual results: soils with petroleum hydrocarbons. Prat Period Hazard Toxic Radioact Waste Manage 5(2):78–87

    Article  Google Scholar 

  • Lu XY, Zhang T, Fang HP (2011) Bacteria-mediated PAH degradation in soil and sediment. Appl Microbiol Biotechnol 89:1357–1371

    Article  CAS  PubMed  Google Scholar 

  • Luo F, Gitiafroz R, Devine CE, Gong Y, Hug LA, Raskin L, Edwards EA (2014) Metatranscriptome of an anaerobic benzene-degrading, nitrate-reducing enrichment culture reveals involvement of carboxylation in benzene ring activation. Appl Environ Microbiol 80(14):4095–4107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahmound A, Aziza Y, Abdeltif A, Rachida M (2008) Biosurfactant production by Bacillus strain injected in the petroleum reservoirs. J Ind Microbiol Biotechnol 35:1303–1306

    Article  CAS  Google Scholar 

  • Maletic S, Dalmacija B, Roncevic S, Agbaba J, Ugarcina Perovic S (2011) Impact of hydrocarbon type, concentration and weathering on its biodegradability in soil. J Environ Sci Health Part A 46(10):1042–1049

    Article  CAS  Google Scholar 

  • Matavulj M, Molitoris HP (2009) Marine fungi: degraders of poly-3-hydroxyalkanoate based plastic materials. Zbornik Matice Srpske za Prirodne Nauke (116):253–265

    Google Scholar 

  • Mattison RG, Taki H, Harayama S (2005) The soil flagellate Heteromita globosa accelerates bacterial degradation of alkylbenzenes through grazing and acetate excretion in batch culture. Microb Ecol 49:142–150

    Article  CAS  PubMed  Google Scholar 

  • McGenity TJ, Folwell BD, McKew BA, Sanni GO (2012) Marine crude-oil biodegradation: a central role for interspecies interactions. Aquat Biosyst 8:10–17

    Article  PubMed  PubMed Central  Google Scholar 

  • Meckenstock RU, Mouttaki H (2011) Anaerobic degradation of non-substituted aromatichydrocarbons. Curr Opin Biotechnol 22(3):406–414

    Article  CAS  PubMed  Google Scholar 

  • Meckenstock RU, Elsner M, Griebler C, Lueders T, Stumpp C, Aamand J, Agathos SN, Albrechtsen HJ, Bastiaens L, Bjerg PL, Boon N (2015) Biodegradation: updating the concepts of control for microbial cleanup in contaminated aquifers. Environ Sci Technol 49(12):7073–7081

    Article  CAS  PubMed  Google Scholar 

  • Meckenstock RU, Boll M, Mouttaki H, Koelschbach JS, Cunha Tarouco P, Weyrauch P, Dong X, Himmelberg AM (2016) Anaerobic degradation of benzene and polycyclic aromatichydrocarbons. J Mol Microbiol Biotechnol 26(1–3):92–118

    Article  CAS  PubMed  Google Scholar 

  • Miranda RDC, de Souza CS, Gomes EDB, Lovaglio RB, Lopes CE, de Queiroz Sousa MDFV (2007) Biodegradation of diesel oil by yeasts isolated from the vicinity of Suape Port in the state of Pernambuco-Brazil. Braz Arch Biol Technol 50:147–152

    Article  CAS  Google Scholar 

  • Morris BE, Henneberger R, Huber H, Moissl-Eichinger C (2013) Microbial syntrophy: interaction for the common good. FEMS Microbiol Rev 37(3):384–406

    Article  CAS  PubMed  Google Scholar 

  • Moursy AS, Abdel-Shafy HI (1983) Removal of hydrocarbons from Nile water. J Environ Int 9(3):165–171

    Article  CAS  Google Scholar 

  • Moursy AS, Abdel-Shafy HI (1984) Role of natural clay and powder carbon on the removal of hydrocarbons from water. In: Proceedings of environmental international conference, London, 10–13 July, pp 131–135

    Google Scholar 

  • Mouttaki H, Johannes J, Meckenstock RU (2012) Identification of naphthalene carboxylase as a prototype for the anaerobic activation of non-substituted aromatic hydrocarbons. Environ Microbiol 14(10):2770–2774

    Article  CAS  PubMed  Google Scholar 

  • Mrozik A, Piotrowska-Seget Z, Labuzek S (2003) Bacterial degradation and bioremediation of polycyclic aromatic hydrocarbons. Pol J Environ Stud 12:15–25

    CAS  Google Scholar 

  • Muthusamy K, Gopalakrishnan Ravi STK, Sivachidambaram P (2008) Biosurfactants: properties, commercial production and application. Curr Sci 94(6):736–747

    CAS  Google Scholar 

  • Nikolopoulou M, Kalogerakis N (2009) Biostimulation strategies for fresh and chronically polluted marine environments with petroleum hydrocarbons. J Chem Technol Biotechnol 84(6):802–807

    Article  CAS  Google Scholar 

  • Olajire AA, Essien JP (2014) Aerobic degradation of petroleum components by microbial consortia. J Pet Environ Biotechnol 5:5

    Article  CAS  Google Scholar 

  • Pandey P, Pathak H, Dave S (2016) Microbial ecology of hydrocarbon degradation in the soil: a review. Res J Environ Toxicol 10(1):1–15

    Article  CAS  Google Scholar 

  • Pathak SSH, Jaroli DP (2014) Factors affecting the rate of biodegradation of polyaromatic hydrocarbons. Int J Pure App Biosci 2(3):185–202

    Google Scholar 

  • Pawar RM (2015) The effect of soil pH on degradation of polycyclic aromatic hydrocarbons (PAHs). J Bioremed Biodegr 6:291301

    Google Scholar 

  • Pawar AN, Ugale SS, More MG, Kokani NF, Khandelwal SR (2013) Biological degradation of naphthalene: a new era. J Bioremed Biodegr 4:203

    Google Scholar 

  • Peng RH, Xiong AS, Xue Y, Fu XY, Gao F et al (2008) Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol Rev 32:927–955

    Article  CAS  PubMed  Google Scholar 

  • Pornsunthorntawee O, Wongpanit P, Chavadej S, Abe M, Rujiravanit R (2008) Structural and physicochemical characterization of crude biosurfactant produced by Pseudomonas aeruginosa SP4 isolated from petroleum contaminated soil. Bioresour Technol 99(6):1589–1595

    Article  CAS  PubMed  Google Scholar 

  • Potin O, Veignie E, Rafin C (2004) Biodegradation of polycyclic aromatic hydrocarbon (PAHs) contaminated soil. FEMS Microbiol Ecol 51(1):71–78

    Article  CAS  PubMed  Google Scholar 

  • Rahman RNZA, Ghazali FM, Salleh AB, Basri M (2006) Biodegradation of hydrocarbon contamination by immobilized bacterial cells. J Microbiol 44(3):354–359

    PubMed  Google Scholar 

  • Reyes-César AL, Absalón ÁE, Fernández FJ, González JM, Cortés-Espinosa DV (2014) Biodegradation of a mixture of PAHs by non-ligninolytic fungal strains isolated from crude oil-contaminated soil. World J Microbiol Biotechnol 30(3):999–1009

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Martinez EM (2006) Microbial diversity and bioremediation of a hydrocarbon contaminated aquifer. Int J Environ Res Public Health 3(3):292–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Röling WF, Milner MG, Jones DM, Lee K, Daniel F, Swannell RJ, Head IM (2002) Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient enhanced oil spill bioremediation. Appl Environ Microbiol 68(11):5537–5548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spellman FR (2008) Ecology for non-ecologists, 1st edn. Government Institutes, USA, p 364

    Google Scholar 

  • Stapleton JRD, Singh VP (2002) Biotransformations: bioremediation Technology for Health and Environmental Protection: bioremediation Technology for Health and Environmental Protection. Elsevier, New York, p 634

    Google Scholar 

  • Tabatabaee A, Assadi MM, Noohi AA, Sajadian VA (2005) Isolation of biosurfactant producing bacteria from oil reservoirs. Iranian J Environ Health Sci Eng 2(1):6–12

    Google Scholar 

  • Teng Y, Luo Y, Sun M, Liu Z, Li Z, Christie P (2010) Effect of bioaugmentation by Paracoccus sp. strain HPD-2 on the soil microbial community and removal of polycyclic aromatic hydrocarbons from an aged contaminated soil. Bioresour Technol 101:3437–3443

    Article  CAS  PubMed  Google Scholar 

  • Tulevaa B, Christovaa N, Jordanovb B, Damyanovab BN, Petrovc P (2005) Naphthalene degradation and biosurfactant activity by Bacillus cereus 28BN. Z Naturforsch 60c:577–582

    Article  Google Scholar 

  • Ueno R, Wada S, Urano N (2008) Repeated batch cultivation of the hydrocarbon degrading, micro algal strain Prototheca zopfii RND16 immobilized in polyurethane foam. Canadian J Microbiol 54:66–70

    Article  CAS  Google Scholar 

  • Vaillancourt FH, Bolin JT, Eltis LD (2006) The ins and outs of ring-cleaving dioxygenases. Crit Rev Biochem Mol Biol 41:241–267

    Google Scholar 

  • Van Beilen JB, Funhoff EG (2005) Expanding the alkane oxygenase toolbox: new enzymes and applications. Curr Opin Biotechnol 16(3):308–314

    Article  CAS  PubMed  Google Scholar 

  • Van Beilen JB, Funhoff EG (2007) Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol, 74 (1):13–21

    Google Scholar 

  • Wang XC, Zhao HM (2007) Uptake and biodegradation of polycyclic aromatic hydrocarbons by marine seaweed. J Coastal Res 50:1056–1061

    Google Scholar 

  • Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12:259–276

    Article  CAS  PubMed  Google Scholar 

  • Xue J, Yu Y, Bai Y, Wang L, Wu Y (2015) Marine oil degrading microorganisms and biodegradation process of petroleum hydrocarbon in marine environments: a review. Curr Microbiol 71(2):220–228

    Article  CAS  PubMed  Google Scholar 

  • Yasin G, Bhanger MI, Ansari TM, Muhammad S, Naqvi SR, Ashraf M, Talpur A (2013) Quality and chemistry of crude oils. J Pet Technol Altern Fuels 4:53–63

    CAS  Google Scholar 

  • Youssef N, Simpson DR, Duncan KE, Mcinerney MJ, Folmsbee M, Fincher T, Knapp RM (2007) In situ biosurfactant production by Bacillus strains injected into a limestone petroleum reservoir. Appl Environ Microbiol 73(4):1239–1247

    Article  CAS  PubMed  Google Scholar 

  • Zafra G, Cortés-Espinosa DV (2015) Biodegradation of polycyclic aromatic hydrocarbons by Trichoderma species: a mini review. Environ Sci Pollut Res 22(24):19426–19433

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are in great debt to the amenities and services provided by the project entitled “Sustainable Development for Wastewater Treatment and Reuse via Constructed Wetlands in Sinai (SWWTR)” that is funded by the Egyptian STDF.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abdel-Shafy, H.I., Mansour, M.S.M. (2018). Microbial Degradation of Hydrocarbons in the Environment: An Overview. In: Kumar, V., Kumar, M., Prasad, R. (eds) Microbial Action on Hydrocarbons. Springer, Singapore. https://doi.org/10.1007/978-981-13-1840-5_15

Download citation

Publish with us

Policies and ethics