Skip to main content

Microbial Bioremediation of Petroleum Hydrocarbon: An Overview

  • Chapter
  • First Online:
Microbial Action on Hydrocarbons

Abstract

Increased environmental toxicity due to extensive use of petroleum-based products gradually proves itself as a major issue of global concern. The release of petroleum products to the environment may cause catastrophic effect on aquatic habitats as well as barrens of fertile soil. Petroleum oil basically contains VOCs (volatile organic compounds), paraffin, gases (methane, ethane, propane, butane, etc.), metal ions (iron, nickel, copper, vanadium, etc.), etc., out of which VOCs may cause severe health problems such as lung, liver and kidney disease. Bioremediation is a process of treatment of contaminated environment with the help of living organisms to bring back to its natural state. Treatment of hydrocarbon-contaminated sites may be accomplished with the help of indigenous microorganisms with diverse groups present in the soil by augmenting with necessary nutrients or by adding external necessary microorganisms. Further, as the petroleum hydrocarbon pollutant creates a stressful environment for growth, the bacterial species having potential to tolerate stress conditions would be an added advantage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abed RMM, Al-Sabahi J, Al-Maqrashi F, Al-Habsi A, Al-Hinai M (2014) Characterization of hydrocarbon-degrading bacteria isolated from oil-contaminated sediments in the Sultanate of Oman and evaluation of bioaugmentation and biostimulation approaches in microcosm experiments. Int Biodeterioration Biodegrad 89:58–66

    Article  CAS  Google Scholar 

  • Adebusoye SA, Amund OO, Ilori MO, Domeih DO, Okpuzor J (2008) Growth and biosurfactant synthesis by Nigerian hydrocarbon-degrading estuarine bacteria. Int J Tropical Biol 56:1603–1611

    Google Scholar 

  • Alvarez VM, Jurelevicius D, Marques JM, de Souza PM, de Araújo LV, Barros TG, Alves de Souza ROM, Freire DMG, Seldin L (2015) Bacillus amyloliquefaciens TSBSO 3.8, a biosurfactant-producing strain with biotechnological potential for microbial enhanced oil recovery. Colloids Surf B: Biointerfaces 136:14–21

    Article  CAS  PubMed  Google Scholar 

  • Ameen F, Moslem M, Hadi S, Al-Sabri AE (2015) Biodegradation of diesel fuel hydrocarbons by mangrove fungi from Red Sea Coast of Saudi Arabia. Saudi J Biol Sci 23(2):211–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anburajan L, Meena B, Raghavan RV, Shridhar D, Joseph TC, Vinithkumar NV, Dharani G, Dheenan PS, Kirubagaran AR (2015) Heterologous expression, purification, and phylogenetic analysis of oil-degrading biosurfactant biosynthesis genes from the marine sponge-associated Bacillus licheniformis NIOT-06. Bioprocess Biosyst Eng 38:1009–1018

    Article  CAS  PubMed  Google Scholar 

  • Anozie O, Onwurah INE (2001) Toxic effects of Bonny light crude oil in rats after ingestion of contaminated diet. Nigerian J Biochem Mol Biol(Proceedings Supplement) 16(3):1035–1085

    Google Scholar 

  • Aresta M, Acquaviva MI, Baruzzi F, Lo Noce RM, Matarante A, Narracci M, Stabili L, Cavallo RA (2010) Isolation and characterization of polyphenols-degrading bacteria from olive-mill wastewaters polluted soil. World J Microbiol Biotechnol 26:639–647

    Article  CAS  Google Scholar 

  • Atlas RM (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev 45:180–209

    CAS  PubMed  PubMed Central  Google Scholar 

  • Atlas RM (1984) Petroleum microbiology. Macmillan Publishing Company, New York

    Google Scholar 

  • Atlas RM, Bartha R (1973) Simulated biodegradation of oil slicks using oleophilic fertilizers. Environ Sci Technol 7:538–541

    Article  CAS  PubMed  Google Scholar 

  • Bach QD, Kim SJ, Choi SC, Oh YS (2005) Enhancing the intrinsic bioremediation of PAH-contaminated anoxic estuarine sediments with biostimulating agents. J Microbiol 43:319–324

    CAS  PubMed  Google Scholar 

  • Barathi S, Vasudevan N (2001) Utilization of petroleum hydrocarbons by Pseudomonas fluorescens isolated from a petroleum–contaminated soil. Environ Int 26:413–416

    CAS  PubMed  Google Scholar 

  • Baryshnikova LM, Grishchenkov VG, Arinbasarov MU, Shkidchenko AN, Boronin LM (2001) Biodegradation of oil products by individual degrading strains and their associations in liquid media. Appl Biochem Microbiol 37(5):463–468

    Article  CAS  Google Scholar 

  • Bastos AEB, Moon DH, Rossi A, Trevors JT, Tsai SM (2000) Salt tolerant phenol degrading microorganisms isolated from Amazonian soil samples. Arch Microbiol 174:346–352

    Article  CAS  PubMed  Google Scholar 

  • Batista SB, Mounteer AH, Amorim FR, Totola MR (2006) Isolation and characterization of biosurfactant/bioemulsifier-producing bacteria from petroleum contaminated sites. Bioresour Technol 97:868–875

    Article  CAS  PubMed  Google Scholar 

  • Beeby A (1993) Applying ecology, 7th edn. Chapman and Hall Publishers, New York

    Google Scholar 

  • Belousova NI, Baryshnikova LM, Shkidchenko AN (2002) Selection of microorganisms capable of degrading petroleum and its products at low temperatures. Appl Biochem Microbiol 38(5):437–440

    Article  CAS  Google Scholar 

  • Bhattacharya D, Sarma PM, Krishnan S, Mishra S, Lal B (2002) Evaluation of genetic diversity among Pseudomonas citronellolis strains isolated from oily sludge-contaminated sites. Appl Environ Microbiol 69(3):1435–1441

    Article  CAS  Google Scholar 

  • Biddle JF, Lipp JS, Lever MA, Lloyd KG, Sørensen KB, Andersonc R, Fredricks HF, Elvert M, Kelly TJ, Schrag DP, Sogin ML, Brenchley JE, Teske A, House CH, Hinrichs KU (2006) Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. Proc Natl Acad Sci U S A 103:3846–3851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blodgett WC (2001) Water–soluble mutagen production during the bioremediation of oil–contaminated soil. Florida Scientist 60(1):28–36

    Google Scholar 

  • Bodour AA, Wang JM, Brusseau ML, Maier RM (2003) Temporal change in culturable phenanthrene degraders in response to long-term exposure to phenanthrene in a soil column system. Environ Microbiol 5(10):888–895

    Article  CAS  PubMed  Google Scholar 

  • Bognolo G (1998) Biosurfactants as emulsifying agents for hydrocarbons. Colloid Surf A Physicochem Eng Asp 152:41–52

    Article  Google Scholar 

  • Boonchan S, Britz ML, Stanley GA (2000) Degradation and mineralization of high–molecular weight polycyclic aromatic hydrocarbons by defined fungal–bacterial cocultures. Appl Environ Microbiol 66(3):1007–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briganti F, Pessione E, Giunta C, Scozzafava A (1997) Purification, biochemical properties and substrate specificity of a catechol 1, 2-dioxygenase from a phenol degrading Acinetobacter radioresistens. FEBS Lett 416:61–64

    Article  CAS  PubMed  Google Scholar 

  • Bujang M, Ibrahim NA, EA R (2013) Biodegradation of oily wastewater by pure culture of Bacillus cereus. ARPN J Agric Biol Sci 8:108–115

    Google Scholar 

  • Butler CS, Mason JR (1997) Structure–function analysis of the bacterial aromatic ring hydroxylating dioxygenases. Adv Microb Physiol 38:47–84

    Article  CAS  PubMed  Google Scholar 

  • Cairns J, Buikema AL (1984) Restoration of habitats impacted by oil spills. Ann Arbor Science Publishers/Butterworth, Boston

    Google Scholar 

  • Campbell BJ, Cary SC (2001) Characterization of a novel Spirochete associated with the hydrothermal vent polychaete annelid, Alvinella pompejana. Appl Environ Microbiol 67:110–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cassidy DP, Hudak AJ (2001) Microorganism selection and biosurfactant production in a continuously and periodically operated bioslurry reactor. J Hazard Mater 84:253–264

    Article  CAS  PubMed  Google Scholar 

  • Cébron A, Louvel B, Faure P, Lanord CF, Chen Y, Murrell JC, Leyval C (2011) Root exudates modify bacterial diversity of phenanthrene degraders in PAH-polluted soil but not phenanthrene degradation rates. Environ Microbiol 13(3):722–736

    Article  CAS  PubMed  Google Scholar 

  • Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Int Biodegradation 3:351e368

    Google Scholar 

  • Cha DK (2000) The effect of biosurfactants on the fate and transport of nonpolar organic contaminants in porous media. Environ Eng 20:1–17

    Google Scholar 

  • Chaillan F, Le Flèche A, Bury E, Phantavong YH, Grimont P, Saliot A, Oudot J (2004) Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms. Res Microbiol 155(7):587–595

    Article  CAS  PubMed  Google Scholar 

  • Chang R (1998) Chemistry, 6th edn. McGraw–Hill Companies, Inc, New York

    Google Scholar 

  • Chang BV, Shiung LC, Yuan SY (2002) Anaerobic biodegradation of polycyclic aromatic hydrocarbon in soil. Chemosphere 48:717–724

    Article  CAS  PubMed  Google Scholar 

  • Chang W, Um Y, Hoffman B, Holoman TRP (2005) Molecular characterization of polycyclic aromatic hydrocarbon (PAH)-degrading methanogenic communities. Biotechnol Prog 21:682–688

    Article  CAS  PubMed  Google Scholar 

  • Chattre S, Purohit H, Shanker R, Khanna P (1996) Bacterial consortia for crude oil spill remediation. Water Sci Technol 34:187–193

    Article  Google Scholar 

  • Christopher WK, Christopher LK (2004) Bacterial succession in a petroleum land treatment unit. Appl Environ Microbiol 70(3):1777–1785

    Article  CAS  Google Scholar 

  • Coral G, Karagoz S (2005) Isolation and characterization of phenanthrene degrading bacteria from a petroleum refinery soil. Ann Microbiol 55:255–259

    CAS  Google Scholar 

  • Crebelli R, Conti L, Crochi B, Carere A, Bertoli C, Giacomo ND (1995) The effect of fuel composition on the mutagenicity of diesel engine exhaust. Mutation Res 346:167–172

    Article  CAS  PubMed  Google Scholar 

  • Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 1:1–13. https://doi.org/10.4061/2011/941810

    Article  CAS  Google Scholar 

  • Das K, Mukherjee AK (2007) Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India. Bioresour Technol 98:1339–1345

    Article  CAS  PubMed  Google Scholar 

  • Das SN, Swamy YV, Rao KK, Misra VN (2004) Pollution in urban environment. Proceedings National Seminar on Pollution in Urban Environment (NSPUIE 2004): Regional Research Laboratory, Bhubaneswar. ISBN:8177648578

    Google Scholar 

  • Das P, Mukherjee S, Sen R (2008) Genetic regulations of the biosynthesis of microbial surfactants: an overview. Biotechnol Genet Eng Rev 25(1):165–186

    Article  CAS  PubMed  Google Scholar 

  • Dongfeng Z, Weilin W, Yunbo Z, Qiyou L, Haibin Y, Chaocheng Z (2011) Study on isolation, identification of a petroleum hydrocarbon degrading bacterium Bacillus fusiformis sp. and influence of environmental factors on degradation efficiency. Chin Pet Process Pe Technol (Environ Prot) 13(4):74–82

    Google Scholar 

  • Dudášová H, Lukáčová L, Murínová L, Puškárová A, Pangallo D, Dercová K (2014) Bacterial strains isolated from PCB-contaminated sediments and their use for bioaugmentation strategy in microcosms. J Basic Microbiol 54:253–260

    Article  CAS  PubMed  Google Scholar 

  • Eriksson M, Dalhammar G, Mohn WW (2002) Bacterial growth and biofilm production on pyrene. FEMS Microbiol Ecol 40:21–27

    Article  CAS  PubMed  Google Scholar 

  • Etkin DS (1998, October) Oil spills from production and exploration activities. Oil spill intelligence report, white paper series Vol. II, no. 8, Publication of Cutter Information Corp

    Google Scholar 

  • Fall RR, Brown JL, Schaeffer TL (1979) Enzyme recruitment allows the biodegradation of recalcitrant–branched hydrocarbons by Pseudomonas citronellolis. Appl Environ Microbiol 38:715–722

    CAS  PubMed  PubMed Central  Google Scholar 

  • Filonov AE, Puntus IF, Karpov AV, Kosheleva IA, Kashparov KI, Slepenkin AV, Boronin AM (2004) Efficiency of naphthalene biodegradation by Pseudomonas putida G7 in soil. J Chem Technol Biotechnol 79:562–569

    Article  CAS  Google Scholar 

  • Fondi M, Rizzi E, Emiliani G, Orlandini V, Berna L, Papaleo MC, Perrin E, Maida I, Corti G, Bellis GD, Baldi F, Dijkshoorn L, Vaneechoutte M, Fani R (2013) The genome sequence of the hydrocarbon-degrading Acinetobacter venetianus VE-C3. Res Microbiol 164(5):439–449

    Article  CAS  PubMed  Google Scholar 

  • Fritsche W, Hofrichter M (2000) In: Klein J (ed) Aerobic degradation by microorganisms in environmental processes- soil decontamination. Wiley-VCH, Weinheim

    Google Scholar 

  • Ghurye GL, Vipulanandan C (1994) A practical approach to biosurfactant production using nonaseptic fermentation of mixed cultures. Biotechnol Bioeng 44:661–666

    Article  CAS  PubMed  Google Scholar 

  • Golyshin PN, Santos VAPMD, Kaiser O, Ferrer M, Sabirova YS, Lünsdorf H, Chernikova TN, Golyshina OV, Yakimov MM, Pühler A, Timmis KN (2003) Genome sequence completed of Alcanivorax borkumensis, a hydrocarbon-degrading bacterium that plays a global role in oil removal from marine systems. J Biotechnol 106:215–220

    Article  CAS  PubMed  Google Scholar 

  • Gregorio SD, Siracusa G, Becarelli S, Mariotti L, Gentini A, Lorenzi R (2016) Isolation and characterization of a hydrocarbonoclastic bacterial enrichment from total petroleum hydrocarbon contaminated sediments: potential candidates for bioaugmentation in bio-based processes. Environ Sci Pollut Res 23:10587. https://doi.org/10.1007/s11356-015-5944-y

    Article  CAS  Google Scholar 

  • Guermouche MA, Bensalah F, Gury J, Duran R (2015) Isolation and characterization of different bacterial strains for bioremediation of n-alkanes and polycyclic aromatic hydrocarbons. Environ Sci Pollut Res 22(20):15332–16346

    Article  CAS  Google Scholar 

  • Hall AJ, Hugunin K, Deaville R, Law RJ, Allchin CR, Jepson PD (2006) The risk of infection from polychlorinated biphenyl exposure in the Harbor Porpoise (Phocoena phocoena): a case-control approach. Environ Health Perspect 114:704–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamann C, Hegemann J, Hildebrandt A (1999) Detection of polycyclic aromatic hydrocarbon degradation genes in different soil bacteria by polymerase chain reaction and DNA hybridization. FEMS Microbiol Lett 173(1):255–263

    Article  CAS  PubMed  Google Scholar 

  • Hemmer MJ, Barron MG, Greene RM (2011) Comparative toxicity of eight oil dispersants, Louisiana sweet crude oil (LSC), and chemically dispersed LSC to two aquatic test species. Environ Toxicol Chem 30(10):2244–2252

    Article  CAS  PubMed  Google Scholar 

  • Hommel RK (1990) Formation and physiological role of biosurfactants produced by hydrocarbon utilizing microorganisms. Biodegradation 1:107–119. https://www.restorethegulf.gov/. Accessed 8 Aug 2016

  • Hyne NJ (2001) Nontechnical guide to petroleum geology, exploration, drilling and production, 2nd edn. PennWell Books, USA. ISBN: 978-0878148233

    Google Scholar 

  • Ibrahim ML, Ijah UJJ, Manga SB, Bilbis LS, Umar S (2013) Production and partial characterization of biosurfactant produced by crude oil degrading bacteria. Int Biodeterioration Biodegrad 81:28–34

    Article  CAS  Google Scholar 

  • ITOPF (2016) http://www.itopf.com/knowledge-resources/data-statistics/statistics/. Accessed 17 Feb 2016

  • Ivanova AA, Vetrova AA, Filonov AE, Boronin AM (2015) Oil biodegradation by microbial–plant associations. Appl Biochem Microbiol 51(2):191–197

    Article  CAS  Google Scholar 

  • Janani PG, Keerthi K, Deshpande A, Bhattacharya S, Indira RP (2014) Molecular identification of the isolated diesel degrading bacteria and optimization studies. J Biochem Technol 5(3):727–730

    Google Scholar 

  • Jia C, Li X, Allinson G, Liu C, Gong Z (2016) Composition and morphology characterization of exopolymeric substances produced by the PAH-degrading fungus of Mucor mucedo. Environ Sci Pollut Res 23(9):8421–3840

    Article  CAS  Google Scholar 

  • John RC, Okpokwasili GC (2012) Crude oil degradation and plasmid profile of nitrifying bacteria isolated from oilimpacted mangrove sediment in the Niger Delta of Nigeria. Bull Environ Contam Toxicol 88:1020–1026

    Google Scholar 

  • Johnson K, Anderson S, Jacobson CS (1996) Phenotypic and genotypic characterization of phenanthrene–degrading fluorescent Pseudomonas biovars. Appl Environ Microbiol 62:3818–3825

    Google Scholar 

  • Juwarkar AA (2012) Microbe-assisted phytoremediation for restoration of biodiversity of degraded lands: a sustainable solution. Proc Natl Acad Sci India 82:313–318

    CAS  Google Scholar 

  • Kaladumo COK (1996) The implications of gas flaring in the Niger Delta environment. Proceedings of the 8th biennial international NNPC seminar. In: The Petroleum Industry and the Nigerian Environment, Port Harcourt, Nigeria, pp 277–290

    Google Scholar 

  • Karanth NGK, Deo PG, Veenanadig NK (1999) Microbial production of biosurfactant and their importance. Ferment Sci Technol 77:116–126

    CAS  Google Scholar 

  • Karpagam S, Lalithakumari D (1999) Plasmid mediated degradation of o-and p-phthalate by Pseudomonas fluorescens. World J Microbiol Biotechnol 15:565–569

    Article  CAS  Google Scholar 

  • Kim H, Jaffé PR (2008) Degradation of toluene by a mixed population of archetypal aerobes, microaerophiles, and denitrifiers: laboratory sand column experiment and multispecies biofilm model formulation. Biotechnol Bioeng 99(2):290–301

    Article  CAS  PubMed  Google Scholar 

  • Kim YH, Engesser KH, Cerniglia CE (2005) Numerical and genetic analysis of polycyclic aromatic hydrocarbon-degrading mycobacteria. Microbial Ecol 50:110–119

    Article  CAS  Google Scholar 

  • Kim YH, Engesser KH, Kim SJ (2007) Physiological, numerical and molecular characterization of alkyl ether-utilizing rhodococci. Environ Microbiol 9(6):1497–1510

    Google Scholar 

  • Krebs CT, Tanner CE (1981) Restoration of oiled marshes through sediment stripping and Spartina propagation. Proceeding of the 1981 oil spill conference, American Petroleum Institute, Washington, DC, pp 375–385

    Google Scholar 

  • Kumar BL, Gopal DVRS (2015) Effective role of indigenous microorganisms for sustainable environment. 3 Biotech 5(6):867–876

    Article  PubMed  PubMed Central  Google Scholar 

  • Lang S (2002) Biological amphiphiles (microbial biosurfactants). Curr Opin Colloid Interface Sci 7:12–20

    Article  CAS  Google Scholar 

  • Li YN, Porter AW, Mumford A, Zhao XH, LY Y (2011) Bacterial community structure and bamA gene diversity in anaerobic degradation of toluene and benzoate under denitrifying conditions. J Appl Microbiol 112:269–279

    Article  CAS  Google Scholar 

  • Li J, Toledo RA, Chungc J, Shim H (2013) Removal of mixture of cis-1, 2 dichloroethylene/trichloroethylene/benzene, toluene, ethylbenzene, and xylenes from contaminated soil by Pseudomonas plecoglossicida. J Chem Technol Biotechnol 89(12):1934–1940

    Article  CAS  Google Scholar 

  • Li F, Guo S, Hartog N, Yuan Y, Yang X (2016) Isolation and characterization of heavy polycyclic aromatic hydrocarbon-degrading bacteria adapted to electrokinetic conditions. Biodegradation 27:1–13

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zhang J, Zhang Z (2004) Isolation and characterization of polycyclic aromatic hydrocarbons-degrading Sphingomonas sp. strain ZL5. Biodegradation 15:205–212

    Article  CAS  PubMed  Google Scholar 

  • Luo Q, Zhang JG, Shen XR, Fan ZQ, He Y, Hou DY (2012) Isolation and characterization of marine diesel oil-degrading Acinetobacter sp. strain Y2. Ann Microbiol 63:633–640

    Article  CAS  Google Scholar 

  • Ma J, Yan G, Ma W, Cheng C, Wang Q, Guo S (2015) Isolation and characterization of oil-degrading microorganisms for bench-scale evaluations of autochthonous bioaugmentation for oil remediation. Water Air Soil Pollut 226:272–280

    Article  CAS  Google Scholar 

  • Mabro RE (2006) Oil in the twenty-first century: issues, challenges and opportunities. Oxford University Press, Oxford ISBN-13: 9780199207381

    Google Scholar 

  • Makkar RS, Cameotra SS (1997) Utilization of molasses for biosurfactant production by two Bacillus strains at thermophilic conditions. J Am Oil Chem Soc 74:887–889

    Article  CAS  Google Scholar 

  • Mandri T, Lin J (2007) Isolation and characterization of engine oil degrading indigenous microorganisms in Kwazulu-Natal, South Africa. Afr J Biotechnol 6:23–27

    CAS  Google Scholar 

  • Martino CD, Lopez NI, Iustman LJR (2012) Isolation and characterization of benzene, toluene, and xylene degrading Pseudomonas sp., selected as candidate for bioremediation. Int Biodeterioration Biodegrad 67:15–20

    Article  CAS  Google Scholar 

  • Miller CD, Hall K, Liang YN, Nieman K, Sorensen D, Issa B, Anderson AJ, Sims RC (2004) Isolation and characterization of polycyclic aromatic hydrocarbon-degrading mycobacterium isolates from soil. Microbial Ecol 48:230–238

    Article  CAS  Google Scholar 

  • Mishra S, Jyot J, Kuhad RC, Lal B (2001) Evaluation of inoculum addition to stimulate in situ bioremediation of oily-sludge-contaminated soil. Appl Environ Microbiol 67:1675–1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • National Academy of Science (NAS) (2005) Oil spill dispersants: efficacy and effects; Ocean Studies Board. http://dels.nas.edu/Report/Spill-Dispersants-Efficacy-Effects/11283

  • National Academy of Sciences (1985) Oil in the sea: inputs, fates and effects. National Academy Press, Washington DC

    Google Scholar 

  • Ndlovu T, Khan S, Khan W (2016) Distribution and diversity of biosurfactant producing bacteria in a wastewater treatment plant. Environ Sci Pollut Res 23(10):9993–10004

    Article  CAS  Google Scholar 

  • Nie M, Yin X, Ren C, Wang Y, Xu F, Shen Q (2010) Novel rhamnolipid biosurfactants produced by a polycyclic aromatic hydrocarbon-degrading bacterium Pseudomonas aeruginosa strain NY3. Biotechnol Adv 28(5):635–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niepceron M, Koltalo FP, Merlin C, Massei AM, Barray S, Bodilis J (2010) Both Cycloclasticus spp. and Pseudomonas spp. as PAH-degrading bacteria in the Seine estuary (France). FEMS Microbiol Ecol 71:137–147

    Article  CAS  PubMed  Google Scholar 

  • Office of Technology Assessment (1990) Coping with an oiled sea: an analysis of oil spill response technologies, OTA-BP-O-63, Washington, DC

    Google Scholar 

  • Office of Technology Assessment (1991) Bioremediation of marine oil spills: an analysis of oil spill response technologies, OTA-BP-O-70, Washington, DC

    Google Scholar 

  • Okpokwasili GC, Odokuma LO (1986) Tolerance of Nitrobacter to toxicity of some Nigerian crude oils. Bull Environ Contam Toxicol 52:388–395

    Google Scholar 

  • Okpokwasili GC, Okorie BB (1988) Biodeterioration potentials of microorganisms isolated from car-engine lubricating oil. Tribol Znt 21:215–220

    Article  CAS  Google Scholar 

  • Onur G, Yilmaz F, and Icgen B (2015) Diesel Oil Degradation Potential of a Bacterium Inhabiting Petroleum Hydrocarbon Contaminated Surface Waters and Characterization of Its Emulsification Ability. J Surfactant Deterg 18:707–717.

    Google Scholar 

  • Onwurah INE (1999) Restoring the crop sustaining potential of crude oil polluted soil by means of Azotobacter inoculation. Plant Prod Res J 4:6–16

    Google Scholar 

  • Onwurah INE (2002) Anticoagulant potency of water-soluble fractions of Bonny light oil and enzyme induction in rats. Biomed Res 13(1):33–37

    CAS  Google Scholar 

  • Onwurah INE, Ogugua VN, Onyike NB, Ochonogor AE, Otitoju OF (2007) Crude oil spills in the environment, effects and some innovative clean-up biotechnologies. Int J Environ Res 1(4):307–320

    CAS  Google Scholar 

  • Oyetibo GO, Ilori MO, Obayori OS, Amund OO (2013) Biodegradation of petroleum hydrocarbons in the presence of nickel and cobalt. J Basic Microbiol 53:917–927

    Article  CAS  PubMed  Google Scholar 

  • Pacwa-Płociniczak M, Płaza GA, Poliwoda A, Piotrowska-Seget Z (2014) Characterization of hydrocarbon-degrading and biosurfactant-producing Pseudomonas sp. P-1 strain as a potential tool for bioremediation of petroleum-contaminated soil. Environ Sci Pollut Res 21:9385–9395

    Article  CAS  Google Scholar 

  • Pedetta A, Pouyte K, Seitz MKH, Babay PA, Espinosa M, Costagliola M, Studdert CA, Peressutti SR (2013) Phenanthrene degradation and strategies to improve its bioavailability to microorganisms isolated from brackish sediments. Int Biodeterior Biodegrad 84:161–167

    Article  CAS  Google Scholar 

  • Peressutti SR, Alvarez HM, Pucci OH (2003) Dynamics of hydrocarbon-degrading bacteriocenosis of an experimental oil pollution in Patagonian soil. Int Biodeterior Biodegrad 52:21–30

    Article  CAS  Google Scholar 

  • Perfumo A, Banat IM, Canganella F, Marchant R (2006) Rhamnolipid production by a novel thermophilic hydrocarbon-degrading Pseudomonas aeruginosa AP02-1. Appl Microbiol Biotechnol 72:132–138

    Article  CAS  PubMed  Google Scholar 

  • Perry JJ (1980) Oil in the biosphere. In: Guthrie FE, Perry JJ (eds) Introduction to environmental toxicology. Elsevier, New York

    Google Scholar 

  • Porob S, Nayak S, Fernandes A, Padmanabhan P, Patil BA, Meena RM, Ramaiah N (2013) PCR screening for the surfactin (sfp) gene in marine Bacillus strains and its molecular characterization from Bacillus tequilensis NIOS11. Turkish J Biol 37:212–221

    CAS  Google Scholar 

  • Prince RC (1993) Petroleum spill bioremediation in marine environments. Crit Rev Microbiol 19:217–242

    Article  CAS  PubMed  Google Scholar 

  • Quatrini P, Scaglione G, De Pasquale C, Riela S Puglia AM (2008) Isolation of gram-positive n-alkane degraders from a hydrocarbon-contaminated Mediterranean shoreline. J Appl Microbiol 104:251–259

    CAS  PubMed  Google Scholar 

  • Reddy PG, Singh HD (1982) Bacterial degradation of emulsified crude oil and the effect of various surfactants. J Microbiol 43:17–22

    Google Scholar 

  • Roling WFM, Milner MG, Jones DM, Lee K, Daniel F, Swannell RJP (2002) Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Appl Environ Microbiol 68(11):5537–5548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roongsawang N, Hase K, Haruki M, Imanaka T, Morikawa M, Kanaya S (2003) Cloning and characterization of the gene cluster encoding arthrofactin synthetase from Pseudomonas sp. MIS38. Chem Biol 10:869–880

    Article  CAS  PubMed  Google Scholar 

  • Rusansky S, Avigad R, Michaeli S, Gutnick DL (1987) Involvement of a plasmid in growth on and dispersion of crude oil by Acinetobacter calcoaceticus RA57. Appl Environ Microbiol 53:1918–1923

    CAS  PubMed  PubMed Central  Google Scholar 

  • Satpute SK, Banat IM, Dhakephalkar PK, Banpurkar AG, Chopade BA (2010) Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms. Biotechnol Adv 28:436–450

    Article  CAS  PubMed  Google Scholar 

  • Sei A, Fathepure BZ (2009) Biodegradation of BTEX at high salinity by an enrichment culture from hypersaline sediments of Rozel Point at Great Salt Lake. J Appl Microbiol 107:2001–2008

    Article  CAS  PubMed  Google Scholar 

  • Sharidah AA, Richardtl A, Goleckil JR, Diersteinl R, Tadrosl MH (2000) Isolation and characterization of two hydrocarbon-degrading Bacillus subtilis strains from oil contaminated soil of Kuwait. Microbiol Res 155:157–164

    Article  Google Scholar 

  • Shin KH, Kim KW, Ahn Y (2006) Use of biosurfactant to remediate phenanthrene-contaminated soil by the combined solubilisation biodegradation process. J Hazard Mater 137(3):1831–1837

    Article  CAS  PubMed  Google Scholar 

  • Short JW, Heintz RA (1997) Identification of Exxon Valdez oil in sediments and tissue from Prince William sound and the North Western Gulf of William based in a PAH weathering model. Environ Sci Technol 31:2375–2384

    Article  CAS  Google Scholar 

  • Simpson DR, Natraj NR, McInerney MJ, Duncan KE (2011) Biosurfactant-producing Bacillus are present in produced brines from Oklahoma oil reservoirs with a wide range of salinities. Appl Microbiol Biotechnol 91:1083–1093

    Article  CAS  PubMed  Google Scholar 

  • Singh D, Fulekar MH (2010) Biodegradation of petroleum hydrocarbons by Pseudomonas putida strain MHF 7109. Clean Soil Air Water 38(8):781–786

    Article  CAS  Google Scholar 

  • Singh G, Malik DK (2013) Utilization of 2T engine oil by Pseudomonas sp. isolated from automobile workshop contaminated soil. Int J Chem Anal Sci 4(2):80–84

    Article  CAS  Google Scholar 

  • Sorensen SR, Johnsen AR, Jensen A, Jacobsen CS (2010) Presence of psychrotolerant phenanthrene-mineralizing bacterial populations in contaminated soils from the Greenland High Arctic. FEMS Microbiol Lett 305:148–154

    Article  CAS  PubMed  Google Scholar 

  • Speight JG (1999) The chemistry and technology of petroleum, Marcel Dekker, ISBN 0–8247–0217-4

    Google Scholar 

  • Spies RB, Rice SD, Wolfe DA, Wright BA (1996) The effect of the Exxon Valdez oil spill on Alaskan coastal environment. Proceedings of the 1993 Exxon Valdez oil spill symposium, American Fisheries Society, Bethesda, MD

    Google Scholar 

  • Sun W, Sun X, Cupples AM (2014) Identification of Desulfosporosinus as toluene-assimilating microorganisms from a methanogenic consortium. International Biodeterioration and Biodegradation. 88:13–19

    Article  CAS  Google Scholar 

  • Su WT, Wu BS, Chen WJ (2011) Characterization and biodegradation of motor oil by indigenous Pseudomonas aeruginosa and optimizing medium constituents. J Taiwan Inst Chem Eng 42:689–695

    Article  CAS  Google Scholar 

  • Tapilatu YH, Grossi V, Acquaviva M, Militon C, Bertrand J, Cuny P (2010) Isolation of hydrocarbon-degrading extremely halophilic archaea from an uncontaminated hypersaline pond (Camargue, France). Extremophiles 14:225–231

    Article  CAS  PubMed  Google Scholar 

  • Tiido T, Rignell-Hydbom A, Jönsson BAG, Giwercman YL, Pederson HS, Wojtyniak B, Ludwicki JK, Lesovoy V, Zvyezday V, Spano M, Manicardi GC, Bizzaro D, Bonefeld-Jørgensen EC, Toft G, Bonde JP, Rylander L, Hagmar L, Giwercman A (2006) Impact of PCB and p,p΄-DDE contaminants on human sperm Y:X chromosome ratio: studies on three European populations and the Inuit population in Greenland. Environ Health Perspect 114:718–724

    Article  CAS  PubMed  Google Scholar 

  • U.S. EPA (1999) A series of fact sheets on Nonpoint Source (NPS) pollution. EPA841-F-96-004, Office of Water, U.S. Environmental Protection Agency

    Google Scholar 

  • U.S. EPA (2000) The quality of our nation’s waters: a summary of the national water quality

    Google Scholar 

  • USEPA (2015) National contingency plan product schedule (March 2015). http://epa.gov/ncer/rfa/2015/2015_star_gradfellow.html. Accessed 17 March 2015

  • Van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67(4):503–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasudevan N, Bharathi S, Arulazhagan P (2007) Role of plasmid in the degradation of petroleum hydrocarbon by Pseudomonas fluorescens NS1. J Environ Sci Health Part A: Tox 42(8):1141–1146

    Article  CAS  Google Scholar 

  • Vecchioli GI, Panno MTD, Painceira MT (1990) Use of selected autochthonous soil bacteria to enhance degradation of hydrocarbons in soil. Environ Pollut 67:249–258

    Article  CAS  PubMed  Google Scholar 

  • Vieira PA, Faria S, Vieira RB, De Franc FP, Cardoso VL (2009) Statistical analysis and optimization of nitrogen, phosphorus, and inoculum concentrations for the biodegradation of petroleum hydrocarbons by response surface methodology. World J M Biotechnol 25:427–438

    Article  CAS  Google Scholar 

  • Wang W, Shao Z (2012) Diversity of flavin-binding monooxygenase genes (almA) in marine bacteria capable of degradation long-chain alkanes. FEMS Microbiol Ecol 80:523–533

    Article  CAS  PubMed  Google Scholar 

  • Weelink SAB, Doesburg WV, Talarico FS, Rijpstra WIC, Smidt H, Stams AJM (2009) A strictly anaerobic betaproteobacterium Georgfuchsia toluolica gen. nov., sp. nov. degrades aromatic compounds with Fe (III), Mn (IV) or nitrate as an electron acceptor. FEMS Microbiol Ecol 70:575–585

    Article  CAS  PubMed  Google Scholar 

  • Xia WX, Li JC, Zheng XL, Bi XJ, Shao JL (2006) Enhanced biodegradation of diesel oil in seawater supplemented with nutrients. Eng Life Sci 6(1):80–85

    Article  CAS  Google Scholar 

  • Yakimov MM, Timmis KN, Wray V, Freddrickson HL (1995) Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Appl Environ Microbiol 61:1706–1713

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yenn R, Borah M, Boruah HP, Roy AS, Baruah R, Saikia N, Sahu OP, Tamuli AK (2014) Phytobioremediation of abandoned crude oil contaminated drill sites of Assam with the aid of a hydrocarbon-degrading bacterial formulation. Int J Phytoremediation 16(7–12):909–925

    Article  CAS  PubMed  Google Scholar 

  • Zeinali M, Vossoughi M, Ardestani SK, Babanezhad E, Masoumian M (2007) Hydrocarbon degradation by thermophilic Nocardia otitidiscaviarum strain TSH1: physiological aspects. J Basic Microbiol 47:534–539

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Hou Z, Yang C, Ma C, Tao F, Xu P (2011) Degradation of n-alkanes and polycyclic aromatic hydrocarbons in petroleum by a newly isolated Pseudomonas aeruginosa DQ8. Bioresour Technol 102(5):4111–4116

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author acknowledges DBT Delcon facility for providing access to e-journals at the Centre for Biotechnology and Bioinformatics, Dibrugarh University, India.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Borah, D. (2018). Microbial Bioremediation of Petroleum Hydrocarbon: An Overview. In: Kumar, V., Kumar, M., Prasad, R. (eds) Microbial Action on Hydrocarbons. Springer, Singapore. https://doi.org/10.1007/978-981-13-1840-5_13

Download citation

Publish with us

Policies and ethics