Skip to main content

Microbial Degradation of Petroleum Hydrocarbons

  • Chapter
  • First Online:
Microbial Action on Hydrocarbons

Abstract

Nowadays, petroleum hydrocarbon pollutants keep on being a genuine natural worry because of the managed development of petroleum oil extraction, related generation which ends up noticeably with ecological issue. The expanding in industrial progression causes expanding in a petroleum-essential product consistently to cover the human needs. Continuous growing, development and improvement of industrial exercises over the whole world make petroleum-based products the most significant issue in this century. Oil spills frequently happen by mishaps amid pumping, transportation and refining. Nearness of these petrochemicals in the environment makes huge risks to human health for their lethal, mutagenic, cancer-causing impacts and their capacity of aggregation in food chain. Researchers keep searching for sustainable remediation techniques for polluted sites. As of now physical and chemical remediation advances are by all accounts facing a few issues like transferring pollutants from one phase to another and not having the ability for complete removal of contaminants which turn into another problem. Among the varieties of the remediation techniques, microbial utilization of microorganisms in biodegradation processes demonstrated the achievement in degrading xenobiotic compounds contrasted with physico-chemical strategies in terms of money-related costs, efficiency, energy efficiency, versatility and simplicity to apply and seems to be the environment sound solution. The key factor for successful bioremediation involves selecting appropriate microbes with high capability of pollutant degradation. Microorganisms like fungi, bacteria and yeast are considered as promising dynamic remarkable microbes involved in biodegradation of petroleum aliphatic and aromatic hydrocarbons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

PAHs:

Polycyclic aromatic hydrocarbons

SNO:

Sulphur, nitrogen, oxygen

TPHs:

Total petroleum hydrocarbons

References

  • Adebusoye SA, Ilori MO, Amund OO, Teniola OD, Olatope SO (2006) Microbial degradation of petroleum hydrocarbons in a polluted tropical stream. J Am Sci 2(3):48–57

    Google Scholar 

  • Adenipekun CO (2008) Bioremediation of engine-oil polluted soil by Pleurotus tuber-regium singer, a Nigerian white-rot fungus. Afr J Biotechnol 7:55–58

    CAS  Google Scholar 

  • Adenipekun CO, Isikhuemhen OS (2008) Bioremediation of engine oil polluted soil by the tropical white rot fungus, Lentinus squarrosulus Mont. (singer). Pak J Biol Sci 11:1637–1643

    Article  Google Scholar 

  • Adeniyi A, Afolabi J (2002) Determination of total petroleum hydrocarbons and heavy metals in soils within the vicinity of facilities handling refined petroleum products in Lagos metropolis. Environ Int 28:79–82

    Article  CAS  PubMed  Google Scholar 

  • Ahearn DG, Crow SA (1980) Yeasts from the North Sea and Amoco Cadiz oil. Bot Mar 23:125–127

    Article  Google Scholar 

  • Ahearn DG, Meyers SP (1972) The role of fungi in the decomposition of hydrocarbons in the marine environment. In: Walters AH, Hueck-van der Plas EH (eds) Biodeterioration of materials. Wiley, New York, pp 12–18

    Google Scholar 

  • Ahearn DG, Meyers SP, Standard PG (1971) The role of yeasts in the decomposition of oils in marine environments. Dev Ind Microbiol 12:126–134

    Google Scholar 

  • Al-Baldawi IA, Abdullah SRS, Suja F, Anuar N, Mushrifah I (2013) Effect of aeration on hydrocarbon phytoremediation capability in pilot sub-surface flow constructed wet land operation. Ecol Eng 61:496–500

    Article  Google Scholar 

  • Antizar-Ladislao B, Lopez-Real JM, Beck AJ (2004) Bioremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated waste using composting approaches. Crit Rev Environ Sci Technol 34:249–289

    Article  CAS  Google Scholar 

  • Atlas RM (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev 45(1):180–209

    CAS  PubMed  PubMed Central  Google Scholar 

  • Atlas RM (1985) Effects of hydrocarbons on micro-organisms and biodegradation in Arctic ecosystems. In: Engelhardt FR (ed) Petroleum effects in the Arctic environment. Elsevier, London, pp 63–99

    Google Scholar 

  • Atlas RM (1988) Microbiology-fundamentals and applications, 2nd edn. Macmillan, New York, pp 352–353

    Google Scholar 

  • Atlas RM, Bartha R (1987) Microbial Ecology Fundamentals and applications, 2nd edn. Benjamin Cummings, Menlo Park

    Google Scholar 

  • Atlas RM, Cerniglia CE (1995) Bioremediation of petroleum pollutants. Biosci 45:332–338

    Article  Google Scholar 

  • Atlas RM, Sexstone A, Gustin P, Miller O, Linkins P, Everett K (1980) Biodegradation of crude oil by tundra soil microorganisms. In: Oxley TA, Becker G, Allsop D (eds) Proceedings of the 4th international biodeterioration symposium. Pitman Publishing, London, pp 21–28

    Google Scholar 

  • Austin B, Calomiris JJ, Walker JD, Colwell RR (1977) Numerical taxonomy and ecology of petroleum degrading bacteria. Appl Environ Microbiol 34:60–68

    CAS  PubMed  PubMed Central  Google Scholar 

  • Azadpour-Keeley A, Keeley JW, Russell HH, Sewell GW (2001) Monitored natural attenuation of contaminants in the subsurface: processes. Ground Water Monit Remediat 21:97–107

    Article  CAS  Google Scholar 

  • Baelum J, Borglin S, Chakraborty R, Fortney JL, Lamendella R, Mason OU, Auer M, Zemla M, Bill M, Conrad ME, Malfatti SA, Tringe SG, Holman HY, Hazen TC, Jansson JK (2012) Deep-sea bacteria enriched by oil and dispersant from the Deepwater horizon spill. Environ Microbiol 14:2405–2416

    Article  CAS  PubMed  Google Scholar 

  • Bagia A, Pampanin DM, Brakstad OG, Roald Kommedal R (2013) Estimation of hydrocarbon biodegradation rates in marine environments: a critical review of the Q10 approach. Mar Environ Res 89:83–90

    Article  CAS  Google Scholar 

  • Baheri H, Meysami P (2002) Feasibility of fungi bioaugmentation in composting a flare pit soil. J Hazard Mater 89:279–286

    Article  CAS  PubMed  Google Scholar 

  • Bailey NJL, Jobson AM, Rogers MA (1973) Bacterial degradation of crude oil: comparison of field and experimental data. Chem Geol 11:203–221

    Article  CAS  Google Scholar 

  • Bartha R, Atlas RM (1977) The microbiology of aquatic oil spills. Adv Appl Microbiol 22:225–266

    Article  CAS  PubMed  Google Scholar 

  • Bartha R, Bossert I (1984) The treatment and disposal of petroleum wastes. In: Atlas RM (ed) Petroleum microbiology. Macmillan, New York, pp 553–578

    Google Scholar 

  • Bhattacharya D, Sarma PM, Krishnan S, Mishra S, Lal B (2003) Evaluation of the genetic diversity among the strains of Pseudomonas citronellolis isolated from oily sludge contaminated sites. Appl Environ Microbiol 60:1435–1441

    Article  CAS  Google Scholar 

  • Boehm PD, Fiest DL(1980) Aspects of the transport of petroleum hydrocarbons to the offshore benthos during the IXTOC-I blowout in the Bay of Campeche, pp 207–236

    Google Scholar 

  • Bogusławska-Was E, Da Browski W (2001) The seasonal variability of yeasts and yeast-like organisms in water and bottom sediment of the Szczecin Lagoon. Int J Hyg Environ Health 203(5–6):451–458

    Article  PubMed  Google Scholar 

  • Bordoloi S, Basumatary B (2015) Phytoremediation of Hydrocarbon-contaminated soil using sedge species. In: Ansari A, Gill S, Gill R, Lanza G, Newman L (eds) Phytoremediation. Springer, Cham

    Google Scholar 

  • Bossert I, Bartha R (1984) The fate of petroleum in soil ecosystems. In: Atlas RM (ed) Petroleum microbiology. Macmillan, New York, pp 434–476

    Google Scholar 

  • Boyd SA, Shelton DR (1984) Anaerobic biodegradation of chlorophenols in fresh and acclimated sludge. Appl Environ Microbiol 47:272–277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Britton LN (1984) Microbial degradation of aliphatic hydrocarbons. In: Gibson DT (ed) Microbial degradation of organic compounds. Marcel Dekker, New York, pp 89–129

    Google Scholar 

  • Brooijmans RJW, Pastink MI, Siezen RJ (2009) Hydrocarbon-degrading bacteria: the oil-spill clean-up crew. Microb Biotechnol 2(6):587–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brune KD, Bayer TS (2012) Engineering microbial consortia to enhance biomining and bioremediation. Front Microbiol 3:1–6

    Article  Google Scholar 

  • Burgin AJ, Hamilton SK (2007) Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Front Ecol Environ 5:89–96

    Article  Google Scholar 

  • Callaghan AV, Morris BEL, Pereira IAC, McInerney MJ, Austin RN, Groves JT, Kukor JJ, Suflita JM, Young LY, Zylstra GJ, Wawrik B (2012) The genome sequence of Desulfatibacillumalkenivorans AK-01: a blueprint for anaerobic alkane oxidation. Environ Microbiol 14:101–113

    Article  CAS  PubMed  Google Scholar 

  • Cappello S, Denaro R, Genovese M, Giuliano L, Yakimov MM (2007) Predominant growth of Alcanivorax during the experiment on “oil spill bioremediation” in mesocosms. Microbiol Res 162:185–190

    Article  CAS  PubMed  Google Scholar 

  • Cappello S, Calogero R, Santisi S, Genovese M, Denaro R, Genovese L, Giuliano L, Mancini G, Yakimov MM (2015) Bioremediation of oil polluted marine sediments: a bio-engineering treatment. Int Microbiol 18:127–134

    CAS  PubMed  Google Scholar 

  • Cerniglia CE (1984) Microbial transformation of aromatic hydrocarbons. In: Atlas RM (ed) Petroleum microbiology. Macmillan, New York, pp 99–128

    Google Scholar 

  • Cerniglia CE, Perry JJ (1973) Crude oil degradation by microorganisms isolated from the marine environment. J Basic Microbiol 13:299–306

    CAS  Google Scholar 

  • Cerniglia C, Sutherland J (2010) Degradation of polycyclic aromatic hydrocarbons by fungi. In: McGenity TJ, van der Meer JR, de Lorenzo V (eds) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg, pp 2079–2110

    Chapter  Google Scholar 

  • Cerniglia CE, Gibson DT, van Baalen C (1980) Oxidation of naphthalene by cyanobacteria and microalgae. J Gen Microbiol 116:495–500

    CAS  Google Scholar 

  • Chaillan F, Le Flèche A, Bury E, Phantavong YH, Grimont P, Saliot A, Oudot J (2004) Identification and biodegradation potential of tropical aerobic hydrocarbon degrading microorganisms. Res Microbiol 155:587–595

    Article  CAS  PubMed  Google Scholar 

  • Chaillan F, Chaîneau CH, Point V, Saliot A, Oudot J (2006) Factors inhibiting bioremediation of soil contaminated with weathered oils and drill cuttings. Environ Pollut 144(1):255–265

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Hong CS, Bush B, Rhee GY (1988) Anaerobic biodegradation of polychlorinated biphenyls by bacteria from Hudson River sediments. Ecotoxicol Environ Saf 16:95–105

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Xua P, Zeng G, Yang C, Huang D, Zhang J (2015) Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: applications, microbes and future research needs. Biotechnol Adv 33:745–755

    Article  CAS  PubMed  Google Scholar 

  • Colwell RR, Walker JD (1977) Ecological aspects of microbial degradation of petroleum in the marine environment. Crit Rev Microbiol 5:423–445

    Article  CAS  Google Scholar 

  • Cook FD, Westlake DWS (1974) Microbiological degradation of northern crude oils. Environmental-social committee; northern pipelines, task force on northern oil development, report no. 74–1. Catalog no. R72–12774. Information Canada, Ottawa

    Google Scholar 

  • Cook WL, Massey JK, Ahearn DJ (1973) The degradation of crude oil by yeasts and its effects on Lebistes reticulatus. In: Ahearn DG, Meyers SP (eds) The microbial degradation of oil pollutants. Publication no. LSU-SG-73-01. Center for Wetland Resources, Louisiana State University, Baton Rouge, pp 279–282

    Google Scholar 

  • Cooney JJ (1984) The fate of petroleum pollutants in fresh water ecosystems. In: Atlas RM (ed) Petroleum microbiology. Macmillan, New York, pp 399–434

    Google Scholar 

  • Cooney JJ, Edmonds P, Brenner QM (1968) Growth and survival of fuel isolates in hydrocarbon-fuel emulsions. Appl Microbiol 16:569–571

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cundell AM, Traxler RW (1974) Hydrocarbon degrading bacteria associated with Arctic oil seeps. Dev Ind Microbiol 15:250–255

    CAS  Google Scholar 

  • Daane LL, Harjono I, Barns SM, Launen LA, Palleroni NJ, Haggblom MM (2002) PAH-degradation by Paenibacillus spp. and description of Paenibacillus naphthalenovorans sp. nov., a naphthalene degrading bacterium from the rhizosphere of salt marsh plants. Int J Syst Evol Microbiol 52:131–139

    Article  CAS  PubMed  Google Scholar 

  • Daghio M, Tatangelo V, Franzetti A, Gandolfi I, Papacchini M, Careghini A, Sezenna E, Saponaro S, Bestetti G (2015) Hydrocarbon degrading microbial communities in bench scale aerobic biobarriers for gasoline contaminated groundwater treatment. Chemosphere 130:34–39

    Article  CAS  PubMed  Google Scholar 

  • Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011:1–13

    Google Scholar 

  • Das K, Mukherjee AK (2007) Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from north-East India. Bioresour Technol 98:1339–1345

    Article  CAS  PubMed  Google Scholar 

  • Das D, Baruah R, Roy AS, Singh AK, Boruah HPD, Kalita J, Bora TC (2015) Complete genome sequence analysis of Pseudomonas aeruginosa N002 reveals its genetic adaptation for crude oil degradation. Genomics 105:182–190

    Article  CAS  PubMed  Google Scholar 

  • Daugulis AJ, McCracken CM (2003) Microbial degradation of high and low molecular weight polyaromatic hydrocarbons in a two-phase partitioning bioreactor by two strains of Sphingomonas sp. Biotechnol Lett 25:1441–1444

    Article  CAS  PubMed  Google Scholar 

  • Davies JS, Westlake DWS (1979) Crude oil utilization by fungi. Can J Microbiol 25:146–156

    Article  CAS  PubMed  Google Scholar 

  • Dellagnezze BM, Sousa GV, Martins LL, Domingos DF, Limache EEG, Vasconcellos SP, Cruz GF, Oliveira VM (2014) Bioremediation potential of microorganisms derived from petroleum reservoirs. Mar Pollut Bull 89:191–200

    Article  CAS  PubMed  Google Scholar 

  • Deng MC, Li J, Liang FR, YiMS XXM, Yuan JP, Peng J, Wu CF, Wang JH (2014) Isolation and characterization of a novel hydrocarbon-degrading bacterium Achromobacter sp. HZ01 from the crude oil-contaminated seawater at the Daya Bay, southern China. Mar Pollut Bull 83:79–86

    Article  CAS  PubMed  Google Scholar 

  • Dibble JT, Bartha R (1979) Effect of environmental parameters on the biodegradation of oil sludge. Appl Environ Microbiol 37:729–739

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng L, Wang W, Cheng J, Ren Y, Zhao G, Gao C, Tang Y, Liu X, Han W, Peng X, Liu R, Wang L (2007) Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proc Natl Acad Sci USA 104:5602–5607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Floodgate G (1984) The fate of petroleum in marine ecosystems. In: Atlas RM (ed) Petroleum microbiology. Macmillan, New York, pp 355–398

    Google Scholar 

  • Foght J (2008) Anaerobic biodegradation of aromatic hydrocarbons: pathways and prospects. J Mol Microbiol Biotechnol 15:93–120

    Article  CAS  PubMed  Google Scholar 

  • Foght JM, Westlake DWS, Johnson WM, Ridgway HF (1996) Environmental gasoline-utilizing isolates and clinical isolates of Pseudomonas aeruginosa are taxonomically indistinguishable by chemotaxonomic and molecular techniques. Microbiology 142(9):2333–2340

    Article  CAS  PubMed  Google Scholar 

  • Fusey P, Oudot J (1984) Relative influence of physical removal and biodegradation in the depuration of petroleum-contaminated seashore sediments. Mar Pollut Bull 15:136–141

    Article  CAS  Google Scholar 

  • Geetha SJ, Joshi SJ, Kathrotiya S (2013) Isolation and characterization of hydrocarbon degrading bacterial isolate from oil contaminated sites. APCBEE Procedia 5:237–241

    Article  CAS  Google Scholar 

  • Gesinde AF, Agbo EB, Agho MO, Dike EFC (2008) Bioremediation of some Nigerian and Arabian crude oils by fungal isolates. Int J Pure Appl Sci 2:37–44

    Google Scholar 

  • Ghazali FM, Abdul Rahman RNZ, Salleh AB, Basri M (2004) Biodegradation of hydrocarbons in soil by microbial consortium. Int Biodeterior Biodegrad 54:61–67

    Article  CAS  Google Scholar 

  • Guarino C, Spada V, Sciarrillo R (2017) Assessment of three approaches of bioremediation (natural attenuation, landfarming and bioagumentation – assistited landfarming) for a petroleum hydrocarbons contaminated soil. Chemosphere 170:10–16

    Article  CAS  PubMed  Google Scholar 

  • Habe H, Omori T (2003) Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci Biotechnol Biochem 67:225–243

    Article  CAS  PubMed  Google Scholar 

  • Hambrick GA, DeLaune RD, Patrick WH (1980) Effect of estuarine sediment pH and oxidation-reduction potential on microbial hydrocarbon degradation. Appl Environ Microbiol 40:365–369

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hamdi H, Benzarti S, Manusadzianas L, Aoyama I, Jedidi N (2007) Solid-phase bioassays and soil microbial activities to evaluate PAH-spiked soil ecotoxicity after a long-term bioremediation process simulating landfarming. Chemosphere 70:135–143

    Article  CAS  PubMed  Google Scholar 

  • Hamzah A, Rabu A, Farzarul R, Yussoff NA (2010) Isolation and characterization of bacteria degrading Sumandak and south Angsi oils. Sains Malays 39(2):161–168

    CAS  Google Scholar 

  • Hamzah A, Phan CW, Abu Bakar NF, Wong KK (2013) Biodegradation of crude oil by constructed bacterial consortia and the constituent single bacteria isolated from Malaysia. Biorem J 17:1–10

    Article  CAS  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15

    Article  CAS  PubMed  Google Scholar 

  • Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9:177–192

    Article  CAS  PubMed  Google Scholar 

  • Hasinger M, Scherr KE, Lundaa T, Brauer L, Zach C, Loibner AP (2012) Changes in iso- and n-alkane distribution during biodegradation of crude oil under nitrate and sulphate reducing conditions. J Biotechnol 157:490–498

    Article  CAS  PubMed  Google Scholar 

  • Hidayat A, Tachibana S (2012) Biodegradation of aliphatic hydrocarbon in three types of crude oil by Fusarium sp. F092 under stress with artificial sea water. J Environ Sci Technol 5:64–73

    Article  CAS  Google Scholar 

  • Hill EC (1978) Biodegradation of hydrocarbon-based products in industrial use. In: Watkinson JR (ed) Developments in biodegradation of hydrocarbons-1. Applied Science Publishers, London, pp 201–226

    Google Scholar 

  • Hill EC, Thomas AR (1976) Microbiological aspects of supersonic aircraft fuel. In: Sharpley JM, Kaplan AM (eds) Proceedings of the third international biodegradation symposium. Applied Science Publishers, Ltd., London, pp 157–174

    Google Scholar 

  • Hollaway SL, Faw GM, Sizemore RK (1980) The bacterial community composition of an active oil field in the northwestern Gulf of Mexico. Mar Pollut Bull 11:153–156

    Article  Google Scholar 

  • Hong YH, Deng MC, Xua XM, Wu CF, Xiao X, Zhua Q, Sun XX, Zhou QZ, Peng J, Yuan JP, Wang JH (2016) Characterization of the transcriptomeof Achromobacter sp. HZ01with the outstanding hydrocarbon-degrading ability. Gene 584:185–194

    Article  CAS  PubMed  Google Scholar 

  • Horowitz A, Atlas RM (1980) Microbial seeding to enhance petroleum hydrocarbon biodegradation in aquatic Arctic ecosystems. In: Oxley TA, Becker G, Allsopp D (eds) Proceedings of the 4th international biodeterioration symposium. Pitman Publishing, London, pp 15–20

    Google Scholar 

  • Hou J, Liu W, Wanga B, Wang Q, Luo Y, Franks AE (2015) PGPR enhanced phytoremediation of petroleum contaminated soil and rhizosphere microbial community response. Chemosphere 138:592–598

    Article  CAS  PubMed  Google Scholar 

  • Hutchins SR (1991) Biodegradation of monoaromatic hydrocarbons by aquifer microorganisms using oxygen, nitrate, or nitrous oxide as the terminal electron acceptor. Appl Environ Microbiol 57:2403–2407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huu NB, Denner EBM, Ha DTC, Wanner G, Stan-Lotter H (1999) Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese oil producing well. Int J Syst Bacteriol 49:367–375

    Article  CAS  PubMed  Google Scholar 

  • Jain PK, Gupta VK, Pathak H, Lowry M, Jaroli DP (2010) Characterization of 2T engine oil degrading indigenous bacteria, collected from high altitude Mussoorie region of India. World J Microbiol Biotechnol 26:1419–1426

    Article  CAS  Google Scholar 

  • Jamison VM, Raymond RL, Hudson JO (1975) Biodegradation of high-octane gasoline in groundwater. Dev Ind Microbiol 16:305–312

    CAS  Google Scholar 

  • Jesubunmi CO (2014) Isolation of oil – degrading microorganisms in spent engine oil – contaminated soil. J Biol Agric Healthc 4:191–195

    Google Scholar 

  • Jobson A, Cook FD, Westlake DWS (1972) Microbial utilization of oil. Appl Microbiol 23:1082–1089

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH degradation in soil. Environ Pollut 133:71–84

    Article  CAS  PubMed  Google Scholar 

  • Jones JG, Eddington MA (1968) An ecological survey of hydrocarbon-oxidizing microorganisms. J Gen Microbiol 52:381–390

    Article  CAS  Google Scholar 

  • Joo HS, Ndegwa PM, Shoda M, Phae CG (2008) Bioremediation of oil-contaminated soil using Candida catenulata and food waste. Environ Pollut 156:891–896

    Article  CAS  PubMed  Google Scholar 

  • Kadali KK, Simons KL, Skuza PP, Moore RB, Ball AS (2012) A complementary approach to identifying and assessing the remediation potential of hydrocarbonoclastic bacteria. J Microbiol Methods 88:348–355

    Article  CAS  PubMed  Google Scholar 

  • Kauppi S, Sinkkonen A, Romantschuk M (2011) Enhancing bioremediation of diesel-fuel-contaminated soil in a boreal climate: comparison of biostimulation and bioaugmentation. Int Biodeter Biodegr 65:359–368

    Article  CAS  Google Scholar 

  • Khan AHA, Tanveer S, Anees M, Muhammad YS, Iqbal M, Yousaf S (2016) Role of nutrients and illuminance in predicting the fate of fungal mediated petroleum hydrocarbon degradation and biomass production. J Environ Manag 176:54–60

    Article  CAS  Google Scholar 

  • Kharusi SA, Abed RMM, Dobretsov S (2016) EDTA addition enhances bacterial respiration activities and hydrocarbon degradation in bioaugmented and nonbioaugmented oil-contaminated desert soils. Chemosphere 147:279–286

    Article  CAS  PubMed  Google Scholar 

  • Khashayar T, Mahsa T (2010) Biodegradation potential of petroleum hydrocarbons by bacterial diversity in soil. World Appl Sci J 8(6):750–755

    CAS  Google Scholar 

  • Komagata K, Nakase T, Katsuya N (1964) Aimilation of hydrocarbons by yeasts. I. Preliminary screening. J Gen Appl Microbiol 10:313–321

    Article  Google Scholar 

  • Kriipsalu M, Marques M, Nammaria DR, Hogland W (2007) Bio-treatment of oily sludge: the contribution of amendment material to the content of target contaminants, and the biodegradation dynamics. J Hazard Mater 148:616–622

    Article  CAS  PubMed  Google Scholar 

  • Krutz LJ, Beyrouty CA, Gentry TJ, Wolf DC, Reynolds CM (2005) Selective enrichment of a pyrene degrader population and enhanced pyrene degradation in Bermuda grass rhizosphere. Biol Fertil Soils 41:359–364

    Article  Google Scholar 

  • Kuznetsov VD, Zaitseva TA, Vakulenko LV, Filippova SN (1992) Streptomyces albiaxialis sp. nov.: a new petroleum hydrocarbon-degrading species of thermo- and halotolerant Streptomyces. Microbiology 61:62–67

    Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54(3):305–315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Jua M, Liu J, Wua W, Li X (2016) Isolation, identification, and crude oil degradation characteristics of a high-temperature, hydrocarbon-degrading strain. Mar Pollut Bull 106:301–307

    Article  CAS  PubMed  Google Scholar 

  • Llanos C, Kioller A (1976) Changes in the flora of soil fungi following oil waste application. Oikos 27:337–382

    Article  Google Scholar 

  • Ma J, Yang Y, Dai X, Chen Y, Deng H, Zhou H, Guo S, Yan G (2016) Effects of adding bulking agent, inorganic nutrient and microbial inocula on biopile treatment for oil-field drilling waste. Chemosphere 150:17–23

    Article  CAS  PubMed  Google Scholar 

  • Mahmoud GA, Koutb MMM, Morsy FM, Bagy MMK (2015a) Mycoflora isolated from Mazot and solar polluted soils in upper Egypt. Egypt J Soil Sci 55(1):15–30

    Article  Google Scholar 

  • Mahmoud GA, Koutb MMM, Morsy FM, Bagy MMK (2015b) Characterization of lipase enzyme produced by hydrocarbons utilizing fungus Aspergillus terreus. Euro J Biol Res 5(3):70–77

    CAS  Google Scholar 

  • Malik ZA, Ahmed S (2012) Degradation of petroleum hydrocarbons by oil field isolated bacterial consortium. Afr J Biotechnol 11:650–658

    CAS  Google Scholar 

  • Mancera-Lopez ME, Esparza-Garcia F, Chavez-Gomez B, Rodriguez-Vazquez R, Saucedo-Castaneda G, Barrera-Cortes J (2008) Bioremediation of an aged hydrocarbon-contaminated soil by a combined system of biostimulation-bioaugmentation with filamentous fungi. Int Biodeterior Biodegrad 61:151–160

    Article  CAS  Google Scholar 

  • Masood N, Zakaria MP, Ali MM, Magam SM, Alkhadher S, Keshavarzifard M, Vaezzadeh V, Hussein MA (2014) Distribution of petroleum hydrocarbons in surface sediments from selected locations in Kuala Selangor River, Malaysia. From sources to solution. Springer

    Google Scholar 

  • Mittal A, Singh P (2009) Isolation of hydrocarbon degrading bacteria from soils contaminated with crude oil spills. Indian J Exp Biol 47:760–765

    PubMed  Google Scholar 

  • Mnif S, Chamkha M, Sayadi S (2009) Isolation and characterization of Halomonas sp. strain C2SS100, a hydrocarbon-degrading bacterium under hypersaline conditions. J Appl Microbiol 107:785–794

    Article  CAS  PubMed  Google Scholar 

  • Namkoong W, Hwang EY, Park JS, Choi JY (2002) Bioremediation of diesel-contaminated soil with composting. Environ Pollut 119:23–31

    Article  CAS  PubMed  Google Scholar 

  • Narro ML, Cerniglia CE, Baalen CV, Gibson DT (1992a) Evidence of NIH shift in naphthalene oxidation by the marine cyanobacterium, Oscillatoria species strain JCM. Appl Environ Microbiol 58:1360–1363

    CAS  PubMed  PubMed Central  Google Scholar 

  • Narro ML, Cerniglia CE, Baalen CV, Gibson DT (1992b) Metabolism of phenanthrene by the marine cyanobacterium Agmenellum quadruplicatum strain PR-6. Appl Environ Microbiol 58:1351–1359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nie Y, Chi CQ, Fang H, Liang JL, Lu SL, Lai GL, Tang YQ, Wu XL (2014) Diverse alkane hydroxylase genes in microorganisms and environments. Sci Rep 4:49–68

    Google Scholar 

  • O’Brien PY, Dixon PS (1976) The effects of oil and oil components on algae; a review. Br Phycol J 11:115–142

    Article  Google Scholar 

  • Obuekwe CO, Badrudeen AM, Al-Saleh E, Mulder JL (2005) Growth and hydrocarbon degradation by three desert fungi under conditions of simultaneous temperature and salt stress. Int Biodeterior Biodegrad 56:197–205

    Article  CAS  Google Scholar 

  • Obuekwe CO, Al-Jadi ZK, Al-Saleh ES (2009) Hydrocarbon degradation in relation to cell-surface hydrophobicity among bacterial hydrocarbon degraders from petroleum-contaminated Kuwait desert environment. Int Biodeterior Biodegrad 63:273–279

    Article  CAS  Google Scholar 

  • Okolo JC, Amadi EN, Odu CTI (2005) Effects of soil treatments containing poultry manure on crude oil degradation in a sandy loam soil. Appl Ecol Env Res 3(1):47–53

    Article  Google Scholar 

  • Olivieri R, Bacchin P, Robertiello A, Oddo N, Degen L, Tonolo A (1976) Microbial degradation of oil spills enhanced by a slow-release fertilizer. Appl Environ Microbiol 31:629–634

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perry JJ (1984) Microbial metabolism of cyclic alkanes. In: Atlas RM (ed) Petroleum microbiology. Macmillan, New York, pp 61–98

    Google Scholar 

  • Pinedo-Rivilla C, Aleu J, Collado I (2009) Pollutants biodegradation by fungi. Curr Org Chem 13:1194–1214

    Article  CAS  Google Scholar 

  • Priya A, Mandal AK, Ball AS, Manefield M, Lal B, Sarma PM (2015) Mass culture strategy for bacterial yeast co-culture for degradation of petroleum hydrocarbons in marine environment. Mar Pollut Bull 100:191–199

    Article  CAS  PubMed  Google Scholar 

  • Raza C, Billal A, Jahan N (2010) Evaluation of biodegradation potential of bacteria in crude oil contaminated soil. Biologia (Pakistan) 5(1&2):77–85

    Google Scholar 

  • Riis V, Kleinsteuber S, Babel W (2003) Influence of high salinities on the degradation of diesel fuel by bacteria consortia. Can J Microbiol 49:713–721

    Article  CAS  PubMed  Google Scholar 

  • Romero MC, Urrutia MI, Reinoso HE, Kiernan MM (2010) Benzo[a]pyrene degradation by soil filamentous fungi. J Yeast Fungal Res 1:25–29

    CAS  Google Scholar 

  • Ron EZ, Rosenberg E (2014) Enhanced bioremediation of oil spills in the sea. Curr Opin Biotechnol 27:191–194

    Article  CAS  PubMed  Google Scholar 

  • Ruberto L, Vazquez SC, MacCormack WP (2003) Effectiveness of the natural bacterial flora, biostimulation and bioaugmentation on the bioremediation of a hydrocarbon contaminated Antarctic soil. Int Biodeterior Biodegrad 52:115–125

    Article  CAS  Google Scholar 

  • Salminen JM, Hanninen PJ, Leveinen J, Lintinen PTJ, Jorgensen KS (2006) Occurrence and rates of terminal electron-accepting processes and recharge processes in petroleum hydrocarbon-contaminated subsurface. J Environ Qual 35:2273–2282

    Article  CAS  PubMed  Google Scholar 

  • Saraswathy A, Hallberg R (2002) Degradation of pyrene by indigenous fungi from a former gasworks site. FEMS Microbiol Lett 210:227–232

    Article  CAS  PubMed  Google Scholar 

  • Sarma PM, Bhattacharya D, Krishnan S, Banwari L (2004) Degradation of polycyclic aromatic hydrocarbons by a newly discovered enteric bacterium, Leclercia adecarboxylata. Appl Environ Microbiol 70(5):3163–3166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sathishkumar M, Binupriya AR, Balk S, Yun S (2008) Biodegradation of crude oil by individual bacterial strains and a mixed bacterial consortium isolated from hydrocarbon contaminated areas. Clean 36(1):92–96

    CAS  Google Scholar 

  • Sayler GS, Hooper SW, Layton AC, Henry King GM (1990) Catabolic plasmids of environmental and ecological significance. Microbiol Ecol 19:1–20

    Article  CAS  Google Scholar 

  • Schneiker S, dos Santos VAPM, Bartels D, Bekel T, Brecht M, Buhrmester J, Chernikova TN, Denaro R, Ferrer M, Gertler C, Goesmann A, Golyshina OV, Kaminski F, Khachane AN, Lang S, Linke B, McHardy AC, Meyer F, Nechitaylo T, Puehler A, Regenhardt D, Rupp O, Sabirova JS, Selbitschka W, Yakimov MM, Timmis KN, Vorhoelter FJ, Weidner S, Kaiser O, Golyshin PN (2006) Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nat Biotechnol 24:997–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sepahi AA, Golpasha DI, Emami M, Nakhoda MA (2008) Isolation and characterization of crude oil degrading Bacillus spp. Iran J Environ Health Sci Eng 5(3):149–154

    Google Scholar 

  • Sheppard PJ, Simons KL, Adetutu EM, Kadali KK, Juhasz AL, Manefield M, Sarma PM, Lal B, Ball AS (2014) The application of carrier-based bioremediation strategy for marine oil spills. Mar Pollut Bull 84(1–2):339–346

    Article  CAS  PubMed  Google Scholar 

  • Sierra J, Renault P (1995) Oxygen consumption by soil microorganisms as affected by oxygen and carbon dioxide levels. Appl Soil Ecol 2:175–184

    Article  Google Scholar 

  • Sihag S, Pathak H, Jaroli DP (2014) Factors affecting the rate of biodegradation of polyaromatic hydrocarbons. Int J Pure Appl Biosci 2:185–202

    Google Scholar 

  • Singer ME, Finnerty WR (1984) Microbial metabolism of straight-chain and branched alkanes. In: Atlas RM (ed) Petroleum microbiology. Macmillan, New York, pp 1–60

    Google Scholar 

  • Singh H (2006) Mycoremediation: fungal bioremediation. Wiley- Interscience, New York

    Book  Google Scholar 

  • So CM, Youngm LY (2001) Anaerobic biodegradation of alkanes by enriched consortia under four different reducing conditions. Environ Toxicol Chem 20:473–478

    Article  CAS  PubMed  Google Scholar 

  • Steliga T, Jakubowicz P, Kapusta P (2012) Changes in toxicity during in situ bioremediation of weathered drill wastes contaminated with petroleum hydrocarbons. Bioresour Technol 125:1–10

    Article  CAS  PubMed  Google Scholar 

  • Sunita VJ, Dolly PR, Bateja S, Vivek UN (2013) Isolation and screening for hydrocarbon utilizing bacteria (HUB) from petroleum samples. Int J Curr Microbiol Appl Sci 2(4):48–60

    Google Scholar 

  • Taccari M, Milanovic V, Comitini F, Casucci C, Ciani M (2012) Effects of biostimulation and bioaugmentation on diesel removal and bacterial community. Int Biodeterior Biodegrad 66:39–46

    Article  CAS  Google Scholar 

  • Tang WW, Zeng GM, Gong JL, Liang J, Xu P, Zhang C, Gong JL, Liang J, Xu P, Zhang C, Huang BB (2014) Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review. Sci Total Environ 468:1014–1027

    Article  CAS  PubMed  Google Scholar 

  • Tejada M, Gonzalez JL, Hernandez MT, Garcia C (2008) Application of different organic amendments in a gasoline contaminated soil: effect on soil microbial properties. Bioresour Technol 99:2872–2880

    Article  CAS  PubMed  Google Scholar 

  • Thenmozhi R, Nagasathya A, Thajuddin N (2011) Studies on biodegradation of used engine oil by consortium cultures. Adv Environ Biol 5(6):1051–1057

    Google Scholar 

  • Throne-Holst M, Wentzel A, Ellingsen TE, Kotlar H-K, Zotchev SB (2007) Identification of novel genes involved in long-chain n-alkane degradation by Acinetobacter sp. strain DSM 17874. Appl Environ Microbiol 73:3327–3332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torlapati J, Boufadel MC (2014) Evaluation of the biodegradation of Alaska north slope oil in microcosms using the biodegradation model. BIOB Front Microbiol 5:1–15

    Google Scholar 

  • Trejo-Hernandez MR, Ortiz A, Okoh AI, Morales D, Quintero R (2007) Biodegradation of heavy crude oil Maya using spent compost and sugar cane bagasse wastes. Chemosphere 68:848–855

    Article  CAS  PubMed  Google Scholar 

  • Tyagi M, Fonseca MMR, de Carvalho CCCR (2010) Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22(2):231–241

    Article  CAS  PubMed  Google Scholar 

  • US Environmental Protection Agency (1986) Test method for evaluating solid waste, SW-846, 3rd ed., 1A. U.S. EPA, Washington, DC

    Google Scholar 

  • van Beilen JB, Funhoff EG (2007) Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol 74:13–21

    Article  CAS  PubMed  Google Scholar 

  • van Beilen JB, Funhoff EG, van Loon A, Just A, Kaysser L, Bouza M, Holtackers R, Röthlisberger M, Li Z, Witholt B (2006) Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases. Appl Environ Microbiol 72:59–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venosa AD, Zhu X (2003) Biodegradation of crude oil contaminating marine shorelines and freshwater wetlands. Spill Sci Technol Bull 8(2):163–178

    Article  CAS  Google Scholar 

  • Verstraete W, Vanloocke R, DeBorger R, Verlinde A (1976) Modelling of the breakdown and the mobilization of hydrocarbons in unsaturated soil layers. In: Sharpley JM, Kaplan AM (eds) Proceedings of the 3rd international biodegradation symposium. Applied Science Publishers, London, pp 99–112

    Google Scholar 

  • von Wedel RJ, Mosquera JF, Goldsmith CD, Hater GR, Wong A, Fox TA, Hunt WT, Paules MS, Quiros JM, Wiegand JW (1988) Bacterial biodegradation of petroleum hydrocarbons in groundwater: in situ augmented bioreclamation with enrichment isolates in California. Water Sci Technol 20:501–503

    Article  Google Scholar 

  • Walker JD, Austin HF, Colwell RR (1975a) Utilization of mixed hydrocarbon substrate by petroleum-degrading microorganisms. J Gen Appl Microbiol 21:27–39

    Article  CAS  Google Scholar 

  • Walker JD, Colwell RR, Vaituzis Z, Meyer SA (1975b) Petroleum-degrading achlorophyllous alga Prototheca zopfii. Nature (London) 254:423–424

    Article  CAS  Google Scholar 

  • Walker JD, Colwell RR, Petrakis L (1976) Biodegradation of petroleum by Chesapeake Bay sediment bacteria. Can J Microbiol 22:423–428

    Article  CAS  PubMed  Google Scholar 

  • Wang YN, Cai H, Chi CQ, Lu AH, Lin XG, Jian ZF, Xl W (2007) Halomonas shengliensis sp. nov., a moderately halophilic, denitrifying, crude-oil-utilizing bacterium. Int J Syst Evol Microbiol 57:1222–1226

    Article  CAS  PubMed  Google Scholar 

  • Whang LM, Liu PWG, Ma CC, Cheng SS (2008) Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil. J Hazard Mater 151:155–163

    Article  CAS  PubMed  Google Scholar 

  • Whyte LG, Bourbonnie’re L, Greer CW (1997) Biodegradation of petroleum hydrocarbons by Psychrotrophic Pseudomonas strains possessing both alkane (alk) and naphthalene (nah) catabolic pathways. Appl Environ Microbiol 63:3719–3723

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu M, Chen L, Tian Y, Ding Y, Dick WA (2013) Degradation of polycyclic aromatic hydrocarbons by microbial consortia enriched from three soils using two different culture media. Environ Pollut 178:152–158

    Article  CAS  PubMed  Google Scholar 

  • Wu M, Dick WA, Li W, Wang X, Yang Q, Wang T, Xu L, Zhang M, Chen L (2016) Bioaugmentation and biostimulation of hydrocarbon degradation and the microbial community in a petroleum-contaminated soil. Int Biodeterior Biodegrad 107:158–164

    Article  CAS  Google Scholar 

  • Wu M, Li W, Dick WA, Ye X, Chen K, Kost D, Chen L (2017) Bioremediation of hydrocarbon degradation in a petroleum-contaminated soil and microbial population and activity determination. Chemosphere 169:124–130

    Article  CAS  PubMed  Google Scholar 

  • Wuerdemann H, Wittmaier M, Rinkel U, Hanert HH (1994) A simple method for determining deficiency of oxygen during soil remediation. In: Hinchee RE, Alleman BC, Hoeppel RE, Miller RN (eds) Hydrocarbon bioremediation. CRC Press, Boca Raton, FL, pp 454–485

    Google Scholar 

  • Yakimov MM, Timmis KN, Golyshin PN (2007) Obligate oil-degrading marine bacteria. Curr Opin Biotechnol 18:257–266

    Article  CAS  PubMed  Google Scholar 

  • Yeung CW, van Stempvoort DR, Spoelstra J, Bickerton G, Voralek J, Greer CW (2013) Bacterial community evidence for anaerobic degradation of petroleum hydrocarbons in cold climate groundwater. Cold Reg Sci Technol 86:55–68

    Article  Google Scholar 

  • Zhou E, Crawford RL (1995) Effects of oxygen, nitrogen, and temperature on gasoline biodegradation in soil. Biodgradation 6:127–140

    Article  CAS  Google Scholar 

  • Zvyagintseva IS, Poglasova MN, Gotoeva MT, Belyaev SS (2001) Effect of the medium salinity on oil degradation by Nocardioform bacteria. Microbiology 70:652–656

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghada Abd-Elmonsef Mahmoud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahmoud, G.AE., Bagy, M.M.K. (2018). Microbial Degradation of Petroleum Hydrocarbons. In: Kumar, V., Kumar, M., Prasad, R. (eds) Microbial Action on Hydrocarbons. Springer, Singapore. https://doi.org/10.1007/978-981-13-1840-5_12

Download citation

Publish with us

Policies and ethics