Skip to main content

Disorder and Defects in Two-Dimensional Materials Probed by Raman Spectroscopy

  • Chapter
  • First Online:
Raman Spectroscopy of Two-Dimensional Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 276))

Abstract

This paper describes the fundamentals of using Raman spectroscopy to characterize disorder in two-dimensional (2D) systems caused by the presence of defects. From the dimensionality point of view, in 2D crystalline structures disorder can be described as addition of point-like (zero-dimensional, 0D) or line-like (one-dimensional, 1D) defects. To characterize the amount of 0D and 1D defects separately, two spectral parameters are needed. The two basic parameters are related to defect-induced activation of forbidden Raman modes and to defect-induced confinement of phonons. A two-dimensional Raman phase diagram can be built based on geometrical considerations, and the geometrical parameters are governed by fundamental aspects such as phonon and electron coherence lengths and Raman cross sections. We apply the general picture to the well-studied case of graphene amorphization, which has been studied since the 70’ies, with the two basic parameters being represented by the peak linewidths (Γ) and by the integrated intensity ratio (AD/AG) between the defect-induced (D) mode and the Raman allowed graphene (G) mode. The amorphization of graphene has been fully described in the terms presented here thanks to the development of standard materials with well-controlled amount of either point-like or line-like defects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, et al., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006)

    Google Scholar 

  2. L.M. Malard, M.H.D. Guimarães, D.L. Mafra, M.S.C. Mazzoni, A. Jorio, Group-theory analysis of electrons and phonons in N-layer graphene systems. Phys. Rev. B 79, 125426 (2009)

    Google Scholar 

  3. J. Ribeiro-Soares, R.M. Almeida, L.G. Cançado, M.S. Dresselhaus, A. Jorio, Group theory for structural analysis and lattice vibrations in phosphorene systems. Phys. Rev. B 91, 205421 (2015)

    Google Scholar 

  4. X. Ling, H. Wang, S. Huang, F. Xia, M.S. Dresselhaus, The renaissance of black phosphorus. Proc. Natl. Acad. Sci. 112(15), 4523–4530 (2015)

    Google Scholar 

  5. L. Xi, S. Huang, E.H. Hasdeo, L. Liang, W.M. Parkin, Y. Tatsumi, A.R.T. Nugraha, A.A. Puretzky, P.M. Das, B.G. Sumpter, D.B. Geohegan, J. Kong, R. Saito, M. Drndic, V. Meunier, M.S. Dresselhaus, Anisotropic electron-photon and electron-phonon interactions in black phosphorus. Nano Lett. 16(4), 2260–2267 (2016)

    Google Scholar 

  6. R.V. Gorbachev, I. Riaz, R.R. Nair, R. Jalil, L. Britnell, B.D. Belle, et al., Hunting for monolayer boron nitride: optical and Raman signatures. Small 7(4), 465–468 (2011)

    Google Scholar 

  7. J. Ribeiro-Soares, R.M. Almeida, E.B. Barros, P.T. Araujo, M.S. Dresselhaus, L.G. Cançado, A. Jorio, Group theory analysis of phonons in two-dimensional transition metal dichalcogenides. Phys. Rev. B 90, 115438 (2014)

    Google Scholar 

  8. Y. Zhao, X. Luo, H. Li, J. Zhang, P.T. Araujo, C.K. Gan, J. Wu, H. Zhang, S.Y. Quek, S. Mildred, Dresselhaus, and Qihua Xiong, interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. Nano Lett. 13(3), 1007–1015 (2013)

    Google Scholar 

  9. A. Jorio, M.S. Dresselhaus, R. Saito, Raman Spectroscopy in Graphene Related Systems (Wiley-VCH, Weinheim, 2011)

    Google Scholar 

  10. L.G. Cançado, M.G. Silva, E.H.M. Ferreira, F. Hof, K. Kampioti, K. Huang, A. Pénicaud, C.A. Achete, B.R. Capaz, A. Jorio, 2D Materials. 4, 025039 (2017)

    Google Scholar 

  11. A. Jorio, A.G. Souza Filho, Raman studies of carbon nanostructures. Annu. Rev. Mater. Res. 46, 357–382 (2016)

    Google Scholar 

  12. F. Tuinstra, J.L. Koenig, J. Chem. Phys. 53, 1126 (1970)

    Google Scholar 

  13. M.S. Dresselhaus, G. Dresselhaus, K. Sugihara, I.L. Spain, H.A. Goldberg, Graphite Fibers and Filaments, vol 5 (Springer, Dordrecht, 2013)

    Google Scholar 

  14. M.S. Dresselhaus, R. Kalish, Ion Implantation in Diamond, Graphite and Related Materials, vol 22 (Springer, Dordrecht, 2013)

    Google Scholar 

  15. A. Ferrari, J. Robertson, Phys. Rev. B 61, 14095 (2000)

    Google Scholar 

  16. K. Takai, M. Oga, H. Sato, T. Enoki, Y. Ohki, A. Taomoto, K. Suenaga, S. Iijima, Phys. Rev. B 67(21), 214202 (2003)

    Google Scholar 

  17. A. Ferrari, J. Robertson, Phil. Trans. R. Soc. Lond. A 362, 2477 (2004)

    Google Scholar 

  18. L.G. Cançado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, A. Jorio, L.N. Coelho, R. Magalhes-Paniago, M.A. Pimenta, Appl. Phys. Lett. 88, 163106 (2006)

    Google Scholar 

  19. A. Ferrari, Solid State Comm. 143, 47 (2007)

    Google Scholar 

  20. C. Casiraghi, A. Hartschuh, H. Qian, S. Piscanec, C. Georgi, A. Fasoli, K. Novoselov, D. Basko, A. Ferrari, Nano Lett. 9, 1433 (2009)

    Google Scholar 

  21. M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cancado, A. Jorio, R. Saito, Phys. Chem. Chem. Phys. 9(11), 1276 (2007)

    Google Scholar 

  22. M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Nano Lett. 10, 751 (2010)

    Google Scholar 

  23. M.M. Lucchese, F. Stavale, E.H.M. Ferreira, C. Vilani, M.V.O. Moutinho, R.B. Capaz, C.A. Achete, A. Jorio, Carbon 48, 1592 (2010)

    Google Scholar 

  24. E.M. Ferreira, M.V. Moutinho, F. Stavale, M. Lucchese, R.B. Capaz, C. Achete, A. Jorio, Phys. Rev. B 82, 125429 (2010)

    Google Scholar 

  25. A. Jorio, M.M. Lucchese, F. Stavale, E.H.M. Ferreira, M.V. Moutinho, R.B. Capaz, C.A. Achete, J. Phys. Condens. Matter 22, 334204 (2010)

    Google Scholar 

  26. L. Cançado, A. Jorio, E.M. Ferreira, F. Stavale, C. Achete, R. Capaz, M. Moutinho, A. Lombardo, T. Kulmala, A. Ferrari, Nano Lett. 11, 3190 (2011)

    Google Scholar 

  27. R. Beams, L.G. Cançado, L. Novotny, Nano Lett. 11, 1177 (2011)

    Google Scholar 

  28. A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K.S. Novoselov, C. Casiraghi, Nano Lett. 12, 3925 (2012)

    Google Scholar 

  29. A. Jorio, ISRN Nanotech. (2012)

    Google Scholar 

  30. A. Jorio, L.G. Cançado, Phys. Chem. Chem. Phys. 14, 15246 (2012)

    Google Scholar 

  31. J. Ribeiro-Soares, M. Oliveros, C. Garin, M. David, L. Martins, C. Almeida, E. Martins-Ferreira, K. Takai, T. Enoki, R. Magalhães Paniago, A. Malachias, A. Jorio, B. Archanjo, C. Achete, L. Cançado, Carbon 95, 646 (2015)

    Google Scholar 

  32. R. Beams, L.G. Cançado, L. Novotny, J. Phys. Condes. Matter 27, 83002 (2015)

    Google Scholar 

  33. C. Thomsen, S. Reich, Double resonant Raman scattering in graphite. Phys. Rev. Lett. 85, 5214 (2000)

    Google Scholar 

  34. R. Saito, A. Jorio, A.G. Souza Filho, G. Dresselhaus, M.S. Dresselhaus, M.A. Pimenta, Probing phonon dispersion relations of graphite by double resonance Raman scattering. Phys. Rev. Lett. 88, 027401 (2001)

    Google Scholar 

  35. D.M. Basko, Theory of resonant multiphonon Raman scattering in graphene. Phys. Rev. B 78(12), 125418 (2008)

    Google Scholar 

  36. P. Venezuela, M. Lazzeri, F. Mauri, Theory of double-resonant Raman spectra in graphene: intensity and line shape of defect-induced and two-phonon bands. Phys. Rev. B 84(3), 035433 (2011)

    Google Scholar 

  37. S. Mignuzzi, A.J. Pollard, N. Bonini, B. Brennan, I.S. Gilmore, M.A. Pimenta, D. Richards, D. Roy, Effect of disorder on Raman scattering of single-layer MoS2. Phys. Rev. B 91, 195411 (2015)

    Google Scholar 

  38. Z. Lin, A. McCreary, N. Briggs, S. Subramanian, K. Zhang, Y. Sun, X. Li, N.J. Borys, H. Yuan, S.K. Fullerton-Shirey, 2D materials advances: from large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications. 2D Mater. 3, 4 (2016)

    Google Scholar 

  39. L.G. Cançado, M.A. Pimenta, B.R.A. Neves, M.S. Dantas, A. Jorio, Influence of the atomic structure on the Raman spectra of graphite edges. Phys. Rev. Lett. 93, 247401 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ado Jorio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jorio, A., Cançado, L.G. (2019). Disorder and Defects in Two-Dimensional Materials Probed by Raman Spectroscopy. In: Tan, PH. (eds) Raman Spectroscopy of Two-Dimensional Materials. Springer Series in Materials Science, vol 276. Springer, Singapore. https://doi.org/10.1007/978-981-13-1828-3_5

Download citation

Publish with us

Policies and ethics