Skip to main content

The Impact of Picture Splicing Operation for Picture Forgery Detection

  • Conference paper
  • First Online:
Advances in Computing and Data Sciences (ICACDS 2018)

Abstract

In the time of the present world, analyze of pictures accept a fundamental part. Some picture editing software are open in the market which can change the photo in particular ways. By abusing these software’s, we can adjust the photo by splicing which is difficult to distinguish by human eyes. The electronic pictures have a no. of applications like in criminal and legalistic examination, military, news and so on. So we required some strong strategy for a picture to identify the forgery. This paper proposes a forgery detection technique with Markov Procedure and ensemble classifier, It focuses on splicing detection which extricates Markov-features in spatial and DCT-domain to recognize the antiquated rarities exhibited by the splicing operation and classify them with the ensemble classifier. Not at all like the earlier work, for reducing the computational complexity of SVM with PCA, is an ensemble classifier with an Adaboost algorithm is utilized to classify the photos as being altered or original. The suggested system is surveyed on a straightforwardly available picture splicing data file by using the cross-verification. The results exhibited that the suggested strategy eclipse in inactive splicing identification method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mehta, R., Agarwal, N.: Splicing detection for combined DCT, DWT and spatial markov-features using ensemble classifier. Procedia Comput. Sci. 132, 1695–1705 (2018)

    Article  Google Scholar 

  2. Farid, H.: A survey of picture forgery detection. IEEE Signal Process. Mag. 26, 6–25 (2009)

    Article  Google Scholar 

  3. Mahdian, B., Saic, S.: A bibliography on blind methods for identifying Picture forgery. Signal Process. Picture Commun. 25(6), 389–399 (2010)

    Article  Google Scholar 

  4. Farid, H.: A picture tells a thousand lies. New Sci. 2411, 38–41 (2003)

    Google Scholar 

  5. Ng, T.T., Chang, S.F., Sun, Q.: Blind detection of photomontage using higher order statistics. In: Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS). pp. 688–691 (2004)

    Google Scholar 

  6. Fu, D., Shi, Y.Q., Su, W.: Detection of image splicing based on hilbert-huang transform and moments of characteristic functions with wavelet decomposition. In: Shi, Y.Q., Jeon, B. (eds.) IWDW 2006. LNCS, vol. 4283, pp. 177–187. Springer, Heidelberg (2006). https://doi.org/10.1007/11922841_15

    Chapter  Google Scholar 

  7. Chen, W., Shi, Y.Q., Su, W.: Picture splicing detection using 2-D phase congruency and statistical moments of characteristic function. In: SPIE Electronic Imaging: Security, Steganography, and Watermarking of Multimedia Contents. pp. 65050R.1–65050R.8 (2007)

    Google Scholar 

  8. Shi, Y.Q., Chen, C., Chen, W.: A natural Picture model approach to splicing detection. In: Proceedings of ACM Multimedia and Security (MM&Sec), pp. 51–62 (2007)

    Google Scholar 

  9. He, Z., Sun, W., Lu, W., Lu, H.: Digital picture splicing detection based on approximate run length. Pattern Recognit. Lett. 32(12), 591–1597 (2011)

    Article  Google Scholar 

  10. He, Z., Lu, W., Sun, W.: Improved run length based detection of digital image splicing. In: Shi, Y.Q., Kim, H.-J., Perez-Gonzalez, F. (eds.) IWDW 2011. LNCS, vol. 7128, pp. 349–360. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32205-1_28

    Chapter  Google Scholar 

  11. Moghaddasi, Z., Jalab, H.A., Noor, R.: Improving RLRN picture splicing detection with the use of PCA and kernel PCA. Sci. World J. (2014). Article ID 606570, https://doi.org/10.1155/2014/606570

    Article  Google Scholar 

  12. He, Z., Lu, W., Sun, W., Huang, J.: Digital Picture splicing detection based on Markov features in DCT and DWT domain. Pattern Recog. 45(12), 4292–4299 (2012)

    Article  Google Scholar 

  13. Ng, T.T., Chang, S.F.: A data set of authentic and spliced Picture blocks. Technical report 203–2004, Columbia University (2004). http://www.ee.columbia.edu/ln/dvmm/downloads/

  14. Su, B., Yuan, Q., Wang, S., Zhao, C., Li, S.: Enhanced state selection Markov model for Picture splicing detection. Eurasip. J. Wirel. Comm. 2014(7), 1–10 (2014)

    Google Scholar 

  15. El-Alfy, M., Qureshi, M.A.: Combining spatial and DCT based Markov features for enhanced blind detection of Picture splicing. Pattern Anal. Appl. 18(3), 713–723 (2015)

    Article  MathSciNet  Google Scholar 

  16. Zhao, X., Wang, S., Li, S., Li, J.: Passive Picture-splicing detection by a 2-D noncausal Markov model. IEEE Trans. Circuits Syst. Video Technol. 25(2), 185–199 (2015)

    Article  Google Scholar 

  17. Moghaddasi, Z., Jalab, H.A., Md Noor, R.: Improving RLRN picture splicing detection with the use of PCA and kernel PCA, Sci. World J. (2014). Article ID 606570, https://doi.org/10.1155/2014/606570

    Article  Google Scholar 

  18. Muhammad, G., Al-Hammadi, M.H., Hussian, M., Bebis, G.: Picture forgery detection using steerable pyramid transform and local binary pattern. Mach. Vis. Appl. 25(4), 985–995 (2014)

    Article  Google Scholar 

  19. Hussain, M., Qasem, S., Bebis, G., Muhammad, G., Aboalsamh, H., Mathkour, H.: Evaluation of picture forgery detection using multi-scale weber local descriptors. Int. J. Artif. Intell. Tools 24(4), 1540016 (2015). https://doi.org/10.1142/s0218213015400163

    Article  Google Scholar 

  20. Han, J.G., Park, T.H., Moon, Y.H., Eom, I.K.: Efficient Markov feature extraction method for Picture splicing detection using maximization and threshold expansion. J. Electron. Imaging 25(2), 023031 (2016)

    Article  Google Scholar 

  21. Nissar, A., Mir, A.H.: Classification of steganalysis techniques: a study. Digit. Signal Process. 20, 1758–1770 (2010)

    Article  Google Scholar 

  22. Chang, C.C., Lin, C.J.: LIBSVM—a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2 (2011). https://doi.org/10.1145/1961189.1961199

    Article  Google Scholar 

  23. Kambhatla, N., Leen, T.K.: Dimension reduction by local principal component analysis. Neural Comput. 9(7), 1493–1516 (1997)

    Article  Google Scholar 

  24. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45014-9_1

    Chapter  Google Scholar 

  25. Kodovský, J., Fridrich, J.: Steganalysis in high dimensions: Fusing classifiers built on random subspaces. In: IS&T/SPIE Electronic Imaging. International Society for Optics and Photonics, USA, California, pp. 78800L–78800L (2011)

    Google Scholar 

  26. Kodovsky, J., Fridrich, J., Holub, V.: Ensemble classifiers for steganalysis of digital media. IEEE Trans. Inf. Forensics Secur. 7, 432–444 (2012)

    Article  Google Scholar 

  27. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley (2012)

    Google Scholar 

  28. Polikar, R.: Ensemble learning, Ensemble Machine Learning. Springer, New York (2012). https://doi.org/10.1007/978-1-4419-9326-7

    Book  Google Scholar 

  29. Tao, H., Ma, X., Qiao, M.: Subspace selective ensemble algorithm based on feature clustering. J. Comput. 8, 509–516 (2013)

    Google Scholar 

  30. Fridrich, J., Kodovsky, J.: Rich models for steganalysis of digital Pictures. Inf. Forensics Secur. 7, 868–882 (2012)

    Article  Google Scholar 

  31. Shi, Y.Q., Chen, C., Chen, W.: A natural image model approach to splicing detection. In: Proceedings of the 9th Workshop on Multimedia and Security, pp 51–62 (2007)

    Google Scholar 

  32. Zhao, X., Wang, S., Li, S., Li, J.: A comprehensive study on third order statistical features for image splicing detection. In: Shi, Y.Q., Kim, H.-J., Perez-Gonzalez, F. (eds.) IWDW 2011. LNCS, vol. 7128, pp. 243–256. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32205-1_20

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachna Mehta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mehta, R., Agrawal, N. (2018). The Impact of Picture Splicing Operation for Picture Forgery Detection. In: Singh, M., Gupta, P., Tyagi, V., Flusser, J., Ören, T. (eds) Advances in Computing and Data Sciences. ICACDS 2018. Communications in Computer and Information Science, vol 905. Springer, Singapore. https://doi.org/10.1007/978-981-13-1810-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1810-8_29

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1809-2

  • Online ISBN: 978-981-13-1810-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics