Skip to main content

Network Traffic Classification Using Multiclass Classifier

  • Conference paper
  • First Online:
Advances in Computing and Data Sciences (ICACDS 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 905))

Included in the following conference series:

Abstract

This paper aims to classify network traffic in order to segregate normal and anomalous traffic. There can be multiple classes of network attacks, so a multiclass model is implemented for ordering attacks in anomalous traffic. A supervised machine learning method SVM support Vector Machine has been used for multiclass classification. The most widely used dataset KDD Cup 99 has been used for analysis. Firstly, the dataset has been preprocessed using three way step and secondly the analysis has been performed using multi-classifier method. The results acquired exhibited the adequacy of the multiclass classification on the dataset to a fair extent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chapelle, O., Schölkopf, B., Zien, A.: Semi-Supervised Learning. MIT Press, London England (2006)

    Book  Google Scholar 

  2. Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A.: Feature selection and classification in multiple class datasets: an application to KDD Cup 99 dataset. Expert Syst. Appl. 38, 5947–5957 (2011)

    Article  Google Scholar 

  3. Kwon, D., Kim, H., Kim, J., Suh, S.C., Kim, I., Kim, K.J.: A survey of deep learning-based network anomaly detection. Cluster Comput. 20, 1–13 (2017)

    Article  Google Scholar 

  4. Pilli, E.S., Joshi, R.C., Niyogi, R.: Network forensic frameworks: survey and research challenges. Digital Invest. 7, 14–27 (2010)

    Article  Google Scholar 

  5. Kaur, P., Bijalwan, A., Joshi, R.C., Awasthi, A.: Network forensic process model and framework: an alternative scenario. In: Singh, R., Choudhury, S., Gehlot, A. (eds.) Intelligent Communication, Control and Devices. AISC, vol. 624, pp. 493–502. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-5903-2_50

    Chapter  Google Scholar 

  6. KDD Cup 1999 Data. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

  7. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97, 273–324 (1997)

    Article  Google Scholar 

  8. Doshi, M., Chaturvedi, S.k.: Correlation based feature selection (CFS) technique to predict student performance. Int. J. Comput. Netw. Com. (IJNC) 6(3) 197–206 (2014)

    Article  Google Scholar 

  9. Zhao, Z., Liu, H.: Searching for interacting features. In: Proceedings of international joint conference on artificial intelligence, 1156–1167 (2007)

    Google Scholar 

  10. Dash, M., Liu, H.: Consistency-based search in feature selection. Artif. Intell. 151, 155–176 (2003)

    Article  MathSciNet  Google Scholar 

  11. Sang, Y., Dang, X., Sang, H.: Symmetric Gini Covariance and Correlation version. Can. J. Stat. 44(3), 1–20 (2016)

    Article  Google Scholar 

  12. Bajaj, K., Arora, A.: Dimension reduction in intrusion detection features using discriminative machine learning approach. Int. J. Comput. Sci. 10(4), 324–328 (2013)

    Google Scholar 

  13. Forman, G.: An extensive empirical study of feature selection metrics for text classification. J Mach. Learn. Res. 3, 289–1305 (2003)

    MATH  Google Scholar 

  14. Shilton, A., Rajasegarar, S., Palaniswami, M.: Combined multiclass classification and anomaly detection for large-scale wireless sensor networks. In: IEEE Eighth International Conference on Intelligent Sensors, Sensor Networks and Information Processing, pp 491–496. IEEE Press, New York (2013)

    Google Scholar 

  15. Sarasamma, S., Zhu, Q., Huff, J.: Hierarchical Kohonen net for anomaly detection in network security. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 35(2), 302–312 (2005)

    Article  Google Scholar 

  16. Han, S.J., Cho, S.B.: Evolutionary neural networks for anomaly detection based on the behavior of a program. IEEE Trans. Syst. Man Cybern. 36(3), 559–570 (2005)

    Article  MathSciNet  Google Scholar 

  17. Rajeswari, L.P., Arputharaj, K.: An active rule approach for network intrusion detection with enhanced C4.5 algorithm. Int. J. Commun. Netw. Syst. Sci. 4, 285–385 (2008)

    Google Scholar 

  18. Bamakan, S.M.H., Wang, H., Yingjie, T., Shi, Y.: An effective intrusion detection framework based on MCLP/SVM optimized by time-varying chaos particle swarm optimization. Neurocomputing 199, 90–102 (2016)

    Article  Google Scholar 

  19. Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed analysis of the KDD CUP 99 data set. In: Proceedings of the 2009 IEEE Symposium on Computational Intelligence in Security and Defense Applications. IEEE Press, New York (2009)

    Google Scholar 

  20. Yukinawa, N., Oba, S., Kato, K., Ishii, S.: Optimal aggregation of binary classifiers for multi-class cancer diagnosis using gene expression profiles. IEEE/ACM Trans Comput. Biol. Bioinform. 6(2), 333–343 (2009)

    Article  Google Scholar 

  21. Singh, R., Kumar, H., Singla, R.K.: Analysis of feature selection techniques for network traffic dataset. In: 2013 International Conference on Machine Intelligence and Research Advancement, pp. 42–46 (2013)

    Google Scholar 

  22. Scikit learn machine learning in python. http://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html

  23. Li, L., Zhang, H., Peng, H., Yang, Y.: Nearest neighbors based density peaks approach to intrusion detection. Chaos, Solitons Fractals 110, 33–40 (2018)

    Article  MathSciNet  Google Scholar 

  24. Farahnakian, F., Heikkonen J.: A deep auto-encoder based approach for intrusion detection system. In: 20th International Conference on Advanced Communication Technology (ICACT), pp. 178–183 (2018)

    Google Scholar 

  25. Kushwaha, P., Buckchash, H., Raman, B.: Anomaly based intrusion detection using filter based feature selection on KDD-CUP 99. In: 2017 IEEE Region 10 Conference (TENCON), Malaysia (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabhjot Kaur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kaur, P., Chaudhary, P., Bijalwan, A., Awasthi, A. (2018). Network Traffic Classification Using Multiclass Classifier. In: Singh, M., Gupta, P., Tyagi, V., Flusser, J., Ören, T. (eds) Advances in Computing and Data Sciences. ICACDS 2018. Communications in Computer and Information Science, vol 905. Springer, Singapore. https://doi.org/10.1007/978-981-13-1810-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1810-8_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1809-2

  • Online ISBN: 978-981-13-1810-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics