Advertisement

Interface Damage of Ceramic-Matrix Composites

  • Longbiao LiEmail author
Chapter
  • 481 Downloads

Abstract

Under cyclic fatigue loading, the damage mechanisms of fiber/matrix interface debonding, interface sliding and interface wear degrade the fiber/matrix interface shear stress. The fiber/matrix interface shear stress plays an important role in the fatigue behavior of fiber-reinforced ceramic-matrix composites (CMCs). In this chapter, the fiber/matrix interface shear stress of fiber-reinforced CMCs with different fiber preforms, i.e., unidirectional, 2D cross-ply and woven, 2.5D woven and 3D braided, is estimated from the fatigue hysteresis dissipated energy at room and elevated temperatures. The experimental fatigue hysteresis dissipated energy versus the applied cycles and the theoretical fatigue hysteresis dissipated energy versus the fiber/matrix interface shear stress relationship are analyzed. With decreasing fiber/matrix interface shear stress, the fatigue hysteresis dissipated energy increases to the peak value, and then decreases to zero, corresponding to the fiber/matrix interface slip Case I, II, III, and IV. Using the experimental fatigue hysteresis dissipated energy, the fiber/matrix interface shear stress of unidirectional SiC/CAS, SiC/Si3N4 with the strong and weak fiber/matrix interface bonding, C/SiC at room temperature and 800 °C in air condition, cross-ply SiC/CAS and C/SiC at room temperature, 700, 800, and 850 °C in air condition, 2D C/SiC at room temperature, 550 °C in air and 1200 °C in vacuum conditions, 2D SiC/SiC at room temperature, 800 °C in air, 600, 800, and 1000 °C in inert, 1000, 1100, and 1200 °C in air and steam, 1300 °C in air conditions, 2.5D C/SiC at room temperature, 800 °C in air and 600 °C in inert conditions, and 3D braided SiC/SiC at 1300 °C in air conditions are obtained.

Keywords

Ceramic-matrix composites (CMCs) Interface shear stress Matrix cracking Interface debonding 

References

  1. 1.
    Rouby D, Reynaud P (1993) Fatigue behavior related to interface modification during load cycling in ceramic-matrix fibre composites. Compos Sci Technol 48(1–4):109–118.  https://doi.org/10.1016/0266-3538(93)90126-2CrossRefGoogle Scholar
  2. 2.
    Evans AG, Zok FW, McMeeking RM (1995) Fatigue of ceramic matrix composites. Acta Metall Mater 43(3):859–875.  https://doi.org/10.1016/0956-7151(94)00304-ZCrossRefGoogle Scholar
  3. 3.
    Rouby D, Louet N (2002) The frictional interface: a tribological approach of thermal misfit, surface roughness and sliding velocity effects. Compos A 33:1453–1459.  https://doi.org/10.1016/S1359-835X(02)00145-8CrossRefGoogle Scholar
  4. 4.
    Holmes JW, Cho CD (1992) Experimental observation of frictional heating in fiber-reinforced ceramics. J Am Ceram Soc 75(4):929–938.  https://doi.org/10.1111/j.1151-2916.1992.tb04162.xCrossRefGoogle Scholar
  5. 5.
    Kim J, Liaw PK (2005) Characterization of fatigue damage modes in nicalon/calcium aluminosilicate composites. J Eng Mater Technol 127:8–15.  https://doi.org/10.1115/1.1836766CrossRefGoogle Scholar
  6. 6.
    Liu CD, Cheng LF, Luan XG, Lin B, Zhou J (2008) Damage evolution and real-time non-destructive evaluation of 2D carbon-fiber/SiC-matrix composites under fatigue loading. Mater Lett 62:3922–3924.  https://doi.org/10.1016/j.matlet.2008.04.063CrossRefGoogle Scholar
  7. 7.
    Holmes JW, Sørensen BF (1995) High temperature mechanical behavior of ceramic matrix composites. In: Nair SV, Jakus K (eds) Butterworth-Hinemann, Boston MA, pp 261–326Google Scholar
  8. 8.
    Yang CP, Jiao GQ, Wang B, Du L (2009) Oxidation damages and a stiffness model for 2D-C/SiC composites. Acta Mater Compos Sin 26:175–181Google Scholar
  9. 9.
    Reynaud P (1996) Cyclic fatigue of ceramic-matrix composites at ambient and elevated temperatures. Compos Sci Technol 56(7):809–814.  https://doi.org/10.1016/0266-3538(96)00025-5CrossRefGoogle Scholar
  10. 10.
    Domergue JM, Vagaggini E, Evans AG (1995) Relationship between hysteresis measurements and the constituent properties of ceramic matrix composites: II, experimental studies on unidirectional materials. J Am Ceram Soc 78(10):2721–2731.  https://doi.org/10.1111/j.1151-2916.1995.tb08047.xCrossRefGoogle Scholar
  11. 11.
    Fantozzi G, Reynaud P (2009) Mechanical hysteresis in ceramic matrix composites. Mater Sci Eng A 521–522:18–23.  https://doi.org/10.1016/j.msea.2008.09.128CrossRefGoogle Scholar
  12. 12.
    Mall S, Engesser JM (2006) Effects of frequency on fatigue behavior of CVI C/SiC at elevated temperature. Compos Sci Technol 66:863–874.  https://doi.org/10.1016/j.compscitech.2005.06.020CrossRefGoogle Scholar
  13. 13.
    Moevus M, Reynaud P, R’Mili M, Godin N, Rouby D, Fantozzi G (2006) Static fatigue of a 2.5D SiC/[Si-B-C] composite at intermediate temperature under air. Adv Sci Technol 50:141–146.  https://doi.org/10.4028/www.scientific.net/AST.50.141CrossRefGoogle Scholar
  14. 14.
    Cho CD, Holmes JW, Barber JR (1991) Estimate of interfacial shear in ceramic composites from frictional heating measurements. J Am Ceram Soc 74(11):2802–2808.  https://doi.org/10.1111/j.1151-2916.1991.tb06846.xCrossRefGoogle Scholar
  15. 15.
    Vagaggini E, Domergue JM, Evans AG (1995) Relationships between hysteresis measurements and the constituent properties of ceramic matrix composites: I, Theory. J Am Ceram Soc 78(10):2709–2720.  https://doi.org/10.1111/j.1151-2916.1995.tb08047.xCrossRefGoogle Scholar
  16. 16.
    Solti JP, Robertson DD, Mall S (2000) Estimation of interfacial properties from hysteresis energy loss in unidirectional ceramic matrix composites. Adv Compos Mater 9(3):161–173.  https://doi.org/10.1163/15685510051033322CrossRefGoogle Scholar
  17. 17.
    Li LB, Song YD (2010) An approach to estimate interface shear stress of ceramic matrix composites from hysteresis loops. Appl Compos Mater 17:309–328.  https://doi.org/10.1007/s10443-009-9122-6CrossRefGoogle Scholar
  18. 18.
    Li LB, Reynaud P, Fantozzi G (2017) Tension-tension fatigue behavior of unidirectional SiC/Si3N4 composite with strong and weak interface bonding at room temperature. Ceram Int 43:8769–8777.  https://doi.org/10.1016/j.ceramint.2017.03.211CrossRefGoogle Scholar
  19. 19.
    Li LB (2013) Modeling hysteresis behavior of cross-ply C/SiC ceramic matrix composites. Compos B 53:36–45.  https://doi.org/10.1016/j.compositesb.2013.04.029CrossRefGoogle Scholar
  20. 20.
    Li LB (2013) Fatigue hysteresis behavior of cross-ply C/SiC ceramic matrix composites at room and elevated temperatures. Mater Sci Eng A 586:160–170.  https://doi.org/10.1016/j.msea.2013.08.017CrossRefGoogle Scholar
  21. 21.
    Li LB (2016) Comparisons of damage evolution between 2D C/SiC and SiC/SiC ceramic-matrix composites under tension-tension cyclic fatigue loading at room and elevated temepratures. Materials 9:844.  https://doi.org/10.3390/ma9100844CrossRefGoogle Scholar
  22. 22.
    Li LB (2017) Comparisons of interface shear stress degradation rate between C/SiC and SiC/SiC ceramic-matrix composites under cyclic fatigue loading at room and elevated temperatures. Compos Interfaces 24:171–202.  https://doi.org/10.1080/09276440.2016.1196995CrossRefGoogle Scholar
  23. 23.
    Li LB (2018) Synergistic effects of temperature, oxidation, and stress level on fatigue hysteresis behavior of cross-ply ceramic-matrix composites. J Aust Ceram Soc 54:11–22.  https://doi.org/10.1007/s41779-017-0121-zCrossRefGoogle Scholar
  24. 24.
    Li LB, Song YD, Sun YC (2013) Estimate interface shear stress of unidirectional C/SiC ceramic matrix composites from hysteresis loops. Appl Compos Mater 20:693–707.  https://doi.org/10.1007/s10443-012-9297-0CrossRefGoogle Scholar
  25. 25.
    Li LB (2014) Assessment of the interfacial properties from fatigue hysteresis loss energy in ceramic-matrix composites with different fiber preforms. Mater Sci Eng A 613:17–36.  https://doi.org/10.1016/j.msea.2014.06.092CrossRefGoogle Scholar
  26. 26.
    Li LB, Song YD, Sun YC (2014) Effect of matrix cracking on hysteresis behavior of cross-ply ceramic matrix composites. J Compos Mater 48:1505–1530.  https://doi.org/10.1177/0021998313488149CrossRefGoogle Scholar
  27. 27.
    Li LB, Song YD, Sun ZG (2009) Influence of interface deboning on the fatigue hysteresis loops of ceramic matrix composites. Chin J Solid Mech 30:8–14Google Scholar
  28. 28.
    Shuler SF, Holmes JW, Wu X, Roach D (1993) Influence of loading frequency on the room-temperature fatigue of a carbon-fiber/SiC-matrix composite. J Am Ceram Soc 76:2327–2336.  https://doi.org/10.1111/j.1151-2916.1993.tb07772.xCrossRefGoogle Scholar
  29. 29.
    Staehler JM, Mall S, Zawada LP (2003) Frequency dependence of high-cycle fatigue behavior of CVI C/SiC at room temperature. Compos Sci Technol 63:2121–2131.  https://doi.org/10.1016/S0266-3538(03)00190-8CrossRefGoogle Scholar
  30. 30.
    Li Y, Xiao P, Li Z, Zhou W, Liensdorf T, Freudenberg W, Langhof N, Krenkel W (2016) Tensile fatigue behavior of plain-weave reinforced Cf/C-SiC composites. Ceram Int 42:6850–6857.  https://doi.org/10.1016/j.ceramint.2016.01.068CrossRefGoogle Scholar
  31. 31.
    Rodrigues PA, Rosa LG, Steen M. (1995) Fatigue behavior of a ceramic matrix composite (CMC), 2D Cfiber/SiCmatrix. In: The 2nd International conference on high temperature ceramic matrix composites, Santa Barbara, CA, United StatesGoogle Scholar
  32. 32.
    Shi J (2001) Tensile fatigue and life prediction of a SiC/SiC composite. In: Proceeding of ASME Turbo Expo 2001, New Orleans, LouisianaGoogle Scholar
  33. 33.
    Michael K (2010) Fatigue behavior of a SiC/SiC composite at 1000°C in air and steam. Master thesis, Air Force Institute of Technology, Ohio, USAGoogle Scholar
  34. 34.
    Groner JD (1994) Characterization of fatigue behavior of 2D woven fabric reinforced ceramic matrix composite at elevated temperature. Master thesis, Air Force Institute of Technology, Ohio, USAGoogle Scholar
  35. 35.
    Jacob D (2010) Fatigue behavior of an advanced SiC/SiC composite with an oxidation inhibited matrix at 1200°C in air and in steam. Master thesis, Air Force Institute of Technology, Ohio, USAGoogle Scholar
  36. 36.
    Zhu SJ, Mizuno M, Nagano Y, Cao JW, Kagawa Y, Kaya H (1998) Creep and fatigue behavior in an enhanced SiC/SiC composite at high temperature. J Am Ceram Soc 81:2269–2277.  https://doi.org/10.1111/j.1151-2916.1998.tb02621.xCrossRefGoogle Scholar
  37. 37.
    Yang FS (2011) Research on fatigue behavior of 2.5d woven ceramic matrix composites. Master thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, ChinaGoogle Scholar
  38. 38.
    Dalmaz A, Reynaud P, Rouby D, Fantozzi G, Abbe F (1998) Mechanical behavior and damage development during cyclic fatigue at high-temperature of a 2.5D carbon/SiC composite. Compos Sci Technol 58:693–699.  https://doi.org/10.1016/S0266-3538(97)00150-4CrossRefGoogle Scholar
  39. 39.
    Shi DQ, Jing X, Yang XG (2015) Low cycle fatigue behavior of a 3D braided KD-I fiber reinforced ceramic matrix composite for coated and uncoated specimens at 1100 °C and 1300 °C. Mater Sci Eng A 631:38–44.  https://doi.org/10.1016/j.msea.2015.01.078CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Nanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations