Skip to main content

Interface Damage of Ceramic-Matrix Composites

  • Chapter
  • First Online:
Damage, Fracture, and Fatigue of Ceramic-Matrix Composites
  • 874 Accesses

Abstract

Under cyclic fatigue loading, the damage mechanisms of fiber/matrix interface debonding, interface sliding and interface wear degrade the fiber/matrix interface shear stress. The fiber/matrix interface shear stress plays an important role in the fatigue behavior of fiber-reinforced ceramic-matrix composites (CMCs). In this chapter, the fiber/matrix interface shear stress of fiber-reinforced CMCs with different fiber preforms, i.e., unidirectional, 2D cross-ply and woven, 2.5D woven and 3D braided, is estimated from the fatigue hysteresis dissipated energy at room and elevated temperatures. The experimental fatigue hysteresis dissipated energy versus the applied cycles and the theoretical fatigue hysteresis dissipated energy versus the fiber/matrix interface shear stress relationship are analyzed. With decreasing fiber/matrix interface shear stress, the fatigue hysteresis dissipated energy increases to the peak value, and then decreases to zero, corresponding to the fiber/matrix interface slip Case I, II, III, and IV. Using the experimental fatigue hysteresis dissipated energy, the fiber/matrix interface shear stress of unidirectional SiC/CAS, SiC/Si3N4 with the strong and weak fiber/matrix interface bonding, C/SiC at room temperature and 800 °C in air condition, cross-ply SiC/CAS and C/SiC at room temperature, 700, 800, and 850 °C in air condition, 2D C/SiC at room temperature, 550 °C in air and 1200 °C in vacuum conditions, 2D SiC/SiC at room temperature, 800 °C in air, 600, 800, and 1000 °C in inert, 1000, 1100, and 1200 °C in air and steam, 1300 °C in air conditions, 2.5D C/SiC at room temperature, 800 °C in air and 600 °C in inert conditions, and 3D braided SiC/SiC at 1300 °C in air conditions are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rouby D, Reynaud P (1993) Fatigue behavior related to interface modification during load cycling in ceramic-matrix fibre composites. Compos Sci Technol 48(1–4):109–118. https://doi.org/10.1016/0266-3538(93)90126-2

    Article  CAS  Google Scholar 

  2. Evans AG, Zok FW, McMeeking RM (1995) Fatigue of ceramic matrix composites. Acta Metall Mater 43(3):859–875. https://doi.org/10.1016/0956-7151(94)00304-Z

    Article  CAS  Google Scholar 

  3. Rouby D, Louet N (2002) The frictional interface: a tribological approach of thermal misfit, surface roughness and sliding velocity effects. Compos A 33:1453–1459. https://doi.org/10.1016/S1359-835X(02)00145-8

    Article  Google Scholar 

  4. Holmes JW, Cho CD (1992) Experimental observation of frictional heating in fiber-reinforced ceramics. J Am Ceram Soc 75(4):929–938. https://doi.org/10.1111/j.1151-2916.1992.tb04162.x

    Article  CAS  Google Scholar 

  5. Kim J, Liaw PK (2005) Characterization of fatigue damage modes in nicalon/calcium aluminosilicate composites. J Eng Mater Technol 127:8–15. https://doi.org/10.1115/1.1836766

    Article  CAS  Google Scholar 

  6. Liu CD, Cheng LF, Luan XG, Lin B, Zhou J (2008) Damage evolution and real-time non-destructive evaluation of 2D carbon-fiber/SiC-matrix composites under fatigue loading. Mater Lett 62:3922–3924. https://doi.org/10.1016/j.matlet.2008.04.063

    Article  CAS  Google Scholar 

  7. Holmes JW, Sørensen BF (1995) High temperature mechanical behavior of ceramic matrix composites. In: Nair SV, Jakus K (eds) Butterworth-Hinemann, Boston MA, pp 261–326

    Google Scholar 

  8. Yang CP, Jiao GQ, Wang B, Du L (2009) Oxidation damages and a stiffness model for 2D-C/SiC composites. Acta Mater Compos Sin 26:175–181

    CAS  Google Scholar 

  9. Reynaud P (1996) Cyclic fatigue of ceramic-matrix composites at ambient and elevated temperatures. Compos Sci Technol 56(7):809–814. https://doi.org/10.1016/0266-3538(96)00025-5

    Article  CAS  Google Scholar 

  10. Domergue JM, Vagaggini E, Evans AG (1995) Relationship between hysteresis measurements and the constituent properties of ceramic matrix composites: II, experimental studies on unidirectional materials. J Am Ceram Soc 78(10):2721–2731. https://doi.org/10.1111/j.1151-2916.1995.tb08047.x

    Article  CAS  Google Scholar 

  11. Fantozzi G, Reynaud P (2009) Mechanical hysteresis in ceramic matrix composites. Mater Sci Eng A 521–522:18–23. https://doi.org/10.1016/j.msea.2008.09.128

    Article  CAS  Google Scholar 

  12. Mall S, Engesser JM (2006) Effects of frequency on fatigue behavior of CVI C/SiC at elevated temperature. Compos Sci Technol 66:863–874. https://doi.org/10.1016/j.compscitech.2005.06.020

    Article  CAS  Google Scholar 

  13. Moevus M, Reynaud P, R’Mili M, Godin N, Rouby D, Fantozzi G (2006) Static fatigue of a 2.5D SiC/[Si-B-C] composite at intermediate temperature under air. Adv Sci Technol 50:141–146. https://doi.org/10.4028/www.scientific.net/AST.50.141

    Article  CAS  Google Scholar 

  14. Cho CD, Holmes JW, Barber JR (1991) Estimate of interfacial shear in ceramic composites from frictional heating measurements. J Am Ceram Soc 74(11):2802–2808. https://doi.org/10.1111/j.1151-2916.1991.tb06846.x

    Article  CAS  Google Scholar 

  15. Vagaggini E, Domergue JM, Evans AG (1995) Relationships between hysteresis measurements and the constituent properties of ceramic matrix composites: I, Theory. J Am Ceram Soc 78(10):2709–2720. https://doi.org/10.1111/j.1151-2916.1995.tb08047.x

    Article  CAS  Google Scholar 

  16. Solti JP, Robertson DD, Mall S (2000) Estimation of interfacial properties from hysteresis energy loss in unidirectional ceramic matrix composites. Adv Compos Mater 9(3):161–173. https://doi.org/10.1163/15685510051033322

    Article  CAS  Google Scholar 

  17. Li LB, Song YD (2010) An approach to estimate interface shear stress of ceramic matrix composites from hysteresis loops. Appl Compos Mater 17:309–328. https://doi.org/10.1007/s10443-009-9122-6

    Article  CAS  Google Scholar 

  18. Li LB, Reynaud P, Fantozzi G (2017) Tension-tension fatigue behavior of unidirectional SiC/Si3N4 composite with strong and weak interface bonding at room temperature. Ceram Int 43:8769–8777. https://doi.org/10.1016/j.ceramint.2017.03.211

    Article  CAS  Google Scholar 

  19. Li LB (2013) Modeling hysteresis behavior of cross-ply C/SiC ceramic matrix composites. Compos B 53:36–45. https://doi.org/10.1016/j.compositesb.2013.04.029

    Article  CAS  Google Scholar 

  20. Li LB (2013) Fatigue hysteresis behavior of cross-ply C/SiC ceramic matrix composites at room and elevated temperatures. Mater Sci Eng A 586:160–170. https://doi.org/10.1016/j.msea.2013.08.017

    Article  CAS  Google Scholar 

  21. Li LB (2016) Comparisons of damage evolution between 2D C/SiC and SiC/SiC ceramic-matrix composites under tension-tension cyclic fatigue loading at room and elevated temepratures. Materials 9:844. https://doi.org/10.3390/ma9100844

    Article  Google Scholar 

  22. Li LB (2017) Comparisons of interface shear stress degradation rate between C/SiC and SiC/SiC ceramic-matrix composites under cyclic fatigue loading at room and elevated temperatures. Compos Interfaces 24:171–202. https://doi.org/10.1080/09276440.2016.1196995

    Article  CAS  Google Scholar 

  23. Li LB (2018) Synergistic effects of temperature, oxidation, and stress level on fatigue hysteresis behavior of cross-ply ceramic-matrix composites. J Aust Ceram Soc 54:11–22. https://doi.org/10.1007/s41779-017-0121-z

    Article  Google Scholar 

  24. Li LB, Song YD, Sun YC (2013) Estimate interface shear stress of unidirectional C/SiC ceramic matrix composites from hysteresis loops. Appl Compos Mater 20:693–707. https://doi.org/10.1007/s10443-012-9297-0

    Article  Google Scholar 

  25. Li LB (2014) Assessment of the interfacial properties from fatigue hysteresis loss energy in ceramic-matrix composites with different fiber preforms. Mater Sci Eng A 613:17–36. https://doi.org/10.1016/j.msea.2014.06.092

    Article  CAS  Google Scholar 

  26. Li LB, Song YD, Sun YC (2014) Effect of matrix cracking on hysteresis behavior of cross-ply ceramic matrix composites. J Compos Mater 48:1505–1530. https://doi.org/10.1177/0021998313488149

    Article  Google Scholar 

  27. Li LB, Song YD, Sun ZG (2009) Influence of interface deboning on the fatigue hysteresis loops of ceramic matrix composites. Chin J Solid Mech 30:8–14

    Google Scholar 

  28. Shuler SF, Holmes JW, Wu X, Roach D (1993) Influence of loading frequency on the room-temperature fatigue of a carbon-fiber/SiC-matrix composite. J Am Ceram Soc 76:2327–2336. https://doi.org/10.1111/j.1151-2916.1993.tb07772.x

    Article  CAS  Google Scholar 

  29. Staehler JM, Mall S, Zawada LP (2003) Frequency dependence of high-cycle fatigue behavior of CVI C/SiC at room temperature. Compos Sci Technol 63:2121–2131. https://doi.org/10.1016/S0266-3538(03)00190-8

    Article  CAS  Google Scholar 

  30. Li Y, Xiao P, Li Z, Zhou W, Liensdorf T, Freudenberg W, Langhof N, Krenkel W (2016) Tensile fatigue behavior of plain-weave reinforced Cf/C-SiC composites. Ceram Int 42:6850–6857. https://doi.org/10.1016/j.ceramint.2016.01.068

    Article  CAS  Google Scholar 

  31. Rodrigues PA, Rosa LG, Steen M. (1995) Fatigue behavior of a ceramic matrix composite (CMC), 2D Cfiber/SiCmatrix. In: The 2nd International conference on high temperature ceramic matrix composites, Santa Barbara, CA, United States

    Google Scholar 

  32. Shi J (2001) Tensile fatigue and life prediction of a SiC/SiC composite. In: Proceeding of ASME Turbo Expo 2001, New Orleans, Louisiana

    Google Scholar 

  33. Michael K (2010) Fatigue behavior of a SiC/SiC composite at 1000°C in air and steam. Master thesis, Air Force Institute of Technology, Ohio, USA

    Google Scholar 

  34. Groner JD (1994) Characterization of fatigue behavior of 2D woven fabric reinforced ceramic matrix composite at elevated temperature. Master thesis, Air Force Institute of Technology, Ohio, USA

    Google Scholar 

  35. Jacob D (2010) Fatigue behavior of an advanced SiC/SiC composite with an oxidation inhibited matrix at 1200°C in air and in steam. Master thesis, Air Force Institute of Technology, Ohio, USA

    Google Scholar 

  36. Zhu SJ, Mizuno M, Nagano Y, Cao JW, Kagawa Y, Kaya H (1998) Creep and fatigue behavior in an enhanced SiC/SiC composite at high temperature. J Am Ceram Soc 81:2269–2277. https://doi.org/10.1111/j.1151-2916.1998.tb02621.x

    Article  CAS  Google Scholar 

  37. Yang FS (2011) Research on fatigue behavior of 2.5d woven ceramic matrix composites. Master thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China

    Google Scholar 

  38. Dalmaz A, Reynaud P, Rouby D, Fantozzi G, Abbe F (1998) Mechanical behavior and damage development during cyclic fatigue at high-temperature of a 2.5D carbon/SiC composite. Compos Sci Technol 58:693–699. https://doi.org/10.1016/S0266-3538(97)00150-4

    Article  CAS  Google Scholar 

  39. Shi DQ, Jing X, Yang XG (2015) Low cycle fatigue behavior of a 3D braided KD-I fiber reinforced ceramic matrix composite for coated and uncoated specimens at 1100 °C and 1300 °C. Mater Sci Eng A 631:38–44. https://doi.org/10.1016/j.msea.2015.01.078

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longbiao Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, L. (2018). Interface Damage of Ceramic-Matrix Composites. In: Damage, Fracture, and Fatigue of Ceramic-Matrix Composites. Springer, Singapore. https://doi.org/10.1007/978-981-13-1783-5_3

Download citation

Publish with us

Policies and ethics