Advertisement

Fatigue Hysteresis Behavior of Ceramic-Matrix Composites

  • Longbiao LiEmail author
Chapter
  • 480 Downloads

Abstract

The fatigue hysteresis behavior of unidirectional, 2D cross-ply and woven, and 2.5D woven fiber-reinforced ceramic-matrix composites (CMCs) are analyzed. Based on the fiber/matrix interface debonding and sliding behavior, the fiber/matrix interface debonding and sliding lengths are determined using the fracture mechanics approach. The fiber/matrix interface debonding ratio and interface sliding ratio are determined for different interface slip cases. The effects of fiber volume fraction, peak stress, matrix crack spacing, interface shear stress, interface debonded energy, fibers failure, fiber Poisson contraction, fiber strength, fiber Weibull modulus, matrix cracking mode, applied cycle number and fiber/matrix interface wear on the fatigue stress–strain hysteresis loops and the fiber/matrix interface debonding and sliding are discussed. The experimental cyclic fatigue stress–strain hysteresis loops of unidirectional SiC/CAS, SiC/1723 and C/SiC, 2D cross-ply SiC/CAS and woven SiC/SiC, and 2.5D woven C/SiC composites under cyclic loading/unloading tensile and tension–tension fatigue loading are predicted.

Keywords

Ceramic-matrix composites (CMCs) Hysteresis loops Matrix cracking Interface debonding 

References

  1. 1.
    Rouby D, Reynaud P (1993) Fatigue behavior related to interface modification during load cycling in ceramic-matrix fibre composites. Compos Sci Technol 48(1–4):109–118.  https://doi.org/10.1016/0266-3538(93)90126-2CrossRefGoogle Scholar
  2. 2.
    McNulty JC, Zok FW (1999) Low cycle fatigue of Nicalon-fiber-reinforced ceramic composites. Compos Sci Technol 59(10):1597–1607.  https://doi.org/10.1016/S0266-3538(99)00019-6CrossRefGoogle Scholar
  3. 3.
    Reynaud P (1996) Cyclic fatigue of ceramic-matrix composites at ambient and elevated temperatures. Compos Sci Technol 56(7):809–814.  https://doi.org/10.1016/0266-3538(96)00025-5CrossRefGoogle Scholar
  4. 4.
    Evans AG (1997) Design and life prediction issues for high-temperature engineering ceramics and their composites. Acta Mater 45(1):23–40.  https://doi.org/10.1016/S1359-6454(96)00143-7CrossRefGoogle Scholar
  5. 5.
    Mall S, Engesser JM (2006) Effects of frequency on fatigue behavior of CVI C/SiC at elevated temperature. Compos Sci Technol 66(7–8):863–874.  https://doi.org/10.1016/j.compscitech.2005.06.020CrossRefGoogle Scholar
  6. 6.
    Li LB, Song YD (2010) An approach to estimate interface shear stress of ceramic matrix composites from hysteresis loops. Appl Compos Mater 17:309–328.  https://doi.org/10.1007/s10443-013-9314-yCrossRefGoogle Scholar
  7. 7.
    Ruggles-Wrenn MB, Christensen DT, Chamberlain AL, Lane JE, Cook TS (2011) Effect of frequency and environment on fatigue behaviour of a CVI SiC/SiC ceramic matrix composite at 1200 °C. Compo Sci Technol 71:190–196.  https://doi.org/10.1016/j.compscitech.2010.11.008CrossRefGoogle Scholar
  8. 8.
    Li LB, Song YD (2013) Estimate interface shear stress of woven ceramic matrix composites. Appl Compos Mater 20:993–1005.  https://doi.org/10.1007/s10443-013-9314-yCrossRefGoogle Scholar
  9. 9.
    Li LB, Song YD, Sun YC (2013) Estimate interface shear stress of unidirectional C/SiC ceramic matrix composites from hysteresis loops. Appl Compos Mater 20:693–707.  https://doi.org/10.1007/s10443-012-9297-0CrossRefGoogle Scholar
  10. 10.
    Li LB, Song YD, Sun YC (2013) Modeling loading/unloading hysteresis behaviour of unidirectional C/SiC ceramic matrix composites. Appl Compos Mater 20:655–672.  https://doi.org/10.1007/s10443-012-9294-3CrossRefGoogle Scholar
  11. 11.
    Ruggles-Wrenn MB, Jones TP (2013) Tension-compression fatigue of a SiC/SiC ceramic matrix composite at 1200 °C in air and in steam. Int J Fatigue 47:154–160.  https://doi.org/10.1016/j.ijfatigue.2012.08.006CrossRefGoogle Scholar
  12. 12.
    Li LB (2016) Modeling cyclic fatigue hysteresis loops of 2D woven ceramic matrix composites at elevated temperatures in steam. Materials 9:421.  https://doi.org/10.3390/ma9060421CrossRefGoogle Scholar
  13. 13.
    Li LB (2016) Modeling the effect of multiple matrix cracking modes on cyclic hysteresis loops of 2D woven ceramic-matrix composites. Appl Compos Mater 23:555–581.  https://doi.org/10.1007/s10443-016-9474-7CrossRefGoogle Scholar
  14. 14.
    Li LB (2016) Modeling cyclic fatigue hysteresis loops of 2D woven ceramic-matrix composite at elevated temperatures in air considering multiple matrix cracking modes. Theoret Appl Fract Mech 85:246–261.  https://doi.org/10.1016/j.tafmec.2016.03.010CrossRefGoogle Scholar
  15. 15.
    Marshall DB, Evans AG (1985) Failure mechanisms in ceramic-fiber/ceramic-matrix composites. J Am Ceram Soc 68(5):225–231.  https://doi.org/10.1111/j.1151-2916.1985.tb15313.xCrossRefGoogle Scholar
  16. 16.
    Holmes JW, Cho CD (1992) Experimental observation of frictional heating in fiber-reinforced ceramics. J Am Ceram Soc 75(4):929–938.  https://doi.org/10.1111/j.1151-2916.1992.tb04162.xCrossRefGoogle Scholar
  17. 17.
    Fantozzi G, Reynaud P (2009) Mechanical hysteresis in ceramic matrix composites. Mater Sci Eng A 521–522:18–23.  https://doi.org/10.1016/j.msea.2008.09.128CrossRefGoogle Scholar
  18. 18.
    Kotil T, Holmes JW, Comninou M (1990) Origin of hysteresis observed during fatigue of ceramic-matrix composites. J Am Ceram Soc 73(7):1879–1883.  https://doi.org/10.1111/j.1151-2916.1990.tb05239.xCrossRefGoogle Scholar
  19. 19.
    Cho CD, Holmes JW, Barber JR (1991) Estimate of interfacial shear in ceramic composites from frictional heating measurements. J Am Ceram Soc 74(11):2802–2808.  https://doi.org/10.1111/j.1151-2916.1991.tb06846.xCrossRefGoogle Scholar
  20. 20.
    Pryce AW, Smith PA (1993) Matrix cracking in unidirectional ceramic matrix composites under quasi-static and cyclic loading. Acta Metall Mater 41(4):1269–1281.  https://doi.org/10.1016/0956-7151(93)90178-UCrossRefGoogle Scholar
  21. 21.
    Ahn BK, Curtin WA (1997) Strain and hysteresis by stochastic matrix cracking in ceramic matrix composites. J Mech Phys Solids 45(2):177–209.  https://doi.org/10.1016/S0022-5096(96)00081-6CrossRefGoogle Scholar
  22. 22.
    Solti JP, Mall S, Robertson DD (1995) Modeling damage in unidirectional ceramic-matrix composites. Compos Sci Technol 54(1):55–66.  https://doi.org/10.1016/0266-3538(95)00041-0CrossRefGoogle Scholar
  23. 23.
    Solti JP, Mall S, Robertson DD (1997) Modeling of fatigue in cross-ply ceramic matrix composites. J Compos Mater 31(19):1921–1943.  https://doi.org/10.1111/j.1151-2916.1990.tb05239.xCrossRefGoogle Scholar
  24. 24.
    Vagaggini E, Domergue JM, Evans AG (1995) Relationships between hysteresis measurements and the constituent properties of ceramic matrix composites: I. Theory. J Am Ceram Soc 78(10):2709–2720.  https://doi.org/10.1111/j.1151-2916.1995.tb08047.xCrossRefGoogle Scholar
  25. 25.
    Hutchison JW, Jensen HM (1990) Models of fiber debonding and pullout in brittle composites with friction. Mech Mater 9(2):139–163.  https://doi.org/10.1016/0167-6636(90)90037-GCrossRefGoogle Scholar
  26. 26.
    Keith WP, Kedward KT (1995) The stress-strain behavior of a porous unidirectional ceramic matrix composite. Composites 26(3):163–174.  https://doi.org/10.1016/0010-4361(95)91379-JCrossRefGoogle Scholar
  27. 27.
    Li LB, Song YD, Sun ZG (2009) Influence of interface de-bonding on the fatigue hysteresis loops of ceramic matrix composites. Chin J Solids Mech 30:8–14Google Scholar
  28. 28.
    Li LB (2016) Modeling the effect of oxidation on hysteresis loops of carbon fiber-reinfroced ceramic-matrix composites under static fatigue at elevated temperature. J Eur Ceram Soc 36:465–480.  https://doi.org/10.1016/j.jeurceramsoc.2015.11.005CrossRefGoogle Scholar
  29. 29.
    Li LB, Song YD, Sun ZG (2009) Effect of fiber Poisson contraction on fatigue hysteresis loops of ceramic matrix composites. J Nanjing Univ Aeronaut Astronaut 41:181–186Google Scholar
  30. 30.
    Li LB (2013) Modeling hysteresis behavior of cross-ply C/SiC ceramic matrix composites. Compos B 53:36–45.  https://doi.org/10.1016/j.compositesb.2013.04.029CrossRefGoogle Scholar
  31. 31.
    Li LB (2013) Fatigue hysteresis behavior of cross-ply C/SiC ceramic matrix composites at room and elevated temperatures. Mater Sci Eng A 586:160–170.  https://doi.org/10.1016/j.msea.2013.08.017CrossRefGoogle Scholar
  32. 32.
    Li LB, Song YD, Sun YC (2014) Effect of matrix cracking on hysteresis behavior of cross-ply ceramic matrix composites. J Compos Mater 48:1505–1530.  https://doi.org/10.1177/0021998313488149CrossRefGoogle Scholar
  33. 33.
    Li LB (2015) Micromechanics modeling of fatigue hysteresis loops in carbon fiber-reinforced ceramic-matrix composites. J Compos Mater 49:3471–3495.  https://doi.org/10.1177/0021998314566055CrossRefGoogle Scholar
  34. 34.
    Li LB, Song YD (2011) Influnece of fiber failure on fatigue hysteresis loops of ceramic matrix composites. J Reinf Plast Compos 30:12–25.  https://doi.org/10.1177/0731684410386273CrossRefGoogle Scholar
  35. 35.
    Li LB (2014) Modeling fatigue hysteresis behavior of unidirectional C/SiC ceramic-matrix composites. Compos B 66:466–474.  https://doi.org/10.1016/j.compositesb.2014.06.014CrossRefGoogle Scholar
  36. 36.
    Li LB (2015) Fatigue hysteresis behavior of unidirectional C/SiC ceramic matrix composites at room and elevated temperatures. Mater Sci Eng A 625:1–18.  https://doi.org/10.1016/j.msea.2014.11.086CrossRefGoogle Scholar
  37. 37.
    Li LB (2015) Synergistic effect of arbitrary loading sequence and interface wear on the fatigue hysteresis loops of carbon fiber-reinforced ceramic-matrix composites. Eng Fract Mech 146:67–88.  https://doi.org/10.1016/j.engfracmech.2015.07.060CrossRefGoogle Scholar
  38. 38.
    Li LB (2015) Modeling the effect of interface wear on fatigue hysteresis behavior of carbon fiber-reinforced ceramic-matrix composites. Appl Compos Mater 22:887–920.  https://doi.org/10.1007/s10443-015-9442-7CrossRefGoogle Scholar
  39. 39.
    Li LB (2017) Effects of loading type, temperature and oxidation on mechanical hysteresis behavior of carbon fiber-reinforced ceramic-matrix composites. Eng Fract Mech 169:336–353.  https://doi.org/10.1016/j.engfracmech.2016.10.010CrossRefGoogle Scholar
  40. 40.
    Li LB (2015) Modeling for fatigue hysteresis loops of carbon fiber-reinforced ceramic-matrix composites under multiple loading. Appl Compos Mater 22:945–959.  https://doi.org/10.1007/s10443-015-9444-5CrossRefGoogle Scholar
  41. 41.
    Li LB (2016) Hysteresis loops of carbon fiber-reinforced ceramic-matrix composites with different fiber preforms. Ceram Int 42:16535–16551.  https://doi.org/10.1016/j.ceramint.2016.07.073CrossRefGoogle Scholar
  42. 42.
    Li LB (2016) Comparison of cyclic hysteresis behavior between cross-ply C/SiC and SiC/SiC ceramic-matrix composites. Materials 9:62.  https://doi.org/10.3390/ma9010062CrossRefGoogle Scholar
  43. 43.
    Budiansky B, Hutchinson JW, Evans AG (1986) Matrix fracture in fiber-reinforced ceramics. J Mech Phys Solids 34(2):167–189.  https://doi.org/10.1016/0022-5096(86)90035-9CrossRefGoogle Scholar
  44. 44.
    Evans AG, Zok FW, McMeeking RM (1995) Fatigue of ceramic matrix composites. Acta Metall Mater 43(3):859–875.  https://doi.org/10.1016/0956-7151(94)00304-ZCrossRefGoogle Scholar
  45. 45.
    Zawada LP, Butkus LM, Hartman GA (1991) Tensile and fatigue behavior of silicon carbide fiber-reinforced aluminosilicate glass. J Am Ceram Soc 74(11):2851–2858.  https://doi.org/10.1111/j.1151-2916.1991.tb06854.xCrossRefGoogle Scholar
  46. 46.
    Kuo WS, Chou TW (1995) Multiple cracking of unidirectional and cross-ply ceramic matrix composites. J Am Ceram Soc 78(3):745–755.  https://doi.org/10.1111/j.1151-2916.1995.tb08242.xCrossRefGoogle Scholar
  47. 47.
    Takeda N, Kiriyama M (1999) Matrix crack evolution in SiC fiber/glass matrix cross-ply laminates. Compos A 30(4):593–597.  https://doi.org/10.1016/S1359-835X(98)00155-9CrossRefGoogle Scholar
  48. 48.
    Li LB, Song YD (2010) Fatigue behavior of cross-ply C/SiC ceramic matrix composites at ambient and elevated temperatures. In: The 7th International Conference on High Temperature Ceramic Matrix Composites, 20–22 Sep 2010, Bayreuth, Germany, pp 314–319Google Scholar
  49. 49.
    Fantozzi G, Reynaud P, Rouby D (2001) Thermomechanical behavior of long fibers ceramic-ceramic composites. Silic Indus 66(9–10):109–119Google Scholar
  50. 50.
    Lee JW, Daniel IM (1990) Progressive transverse cracking of crossply composite laminates. J Compos Mater 24(11):1225–1243. https://doi.org/10.1177/002199839002401108
  51. 51.
    Wang SW, Parvizi-Majidi A (1992) Experimental characterization of the tensile behavior of Nicalon fiber-reinforced calcium aluminosilicate composites. J Mater Sci 27(20):5483–5496.  https://doi.org/10.1007/BF00541610CrossRefGoogle Scholar
  52. 52.
    Opalski FA, Mall S (1994) Tension-compression fatigue behavior of a silicon carbide calcium-aluminosilicate ceramic matrix composites. J Reinf Plast Compos 13(5):420–438.  https://doi.org/10.1177/073168449401300503CrossRefGoogle Scholar
  53. 53.
    Li P, Wang B, Zhen WQ, Jiao GQ (2014) Tensile loading/unloading stress-strain behavior of 2D-SiC/SiC composites. Acta Mater Compos Sinica 31:676–682Google Scholar
  54. 54.
    Michael K (2010) Fatigue behavior of a SiC/SiC composite at 1000 °C in air and steam. Master Thesis, Air Force Institute of TechnologyGoogle Scholar
  55. 55.
    Jacob D (2010) Fatigue behavior of an advanced SiC/SiC composite with an oxidation inhibited matrix at 1200 °C in air and in steam. Master Thesis, Air Force Institute of TechnologyGoogle Scholar
  56. 56.
    Zhu SJ, Mizuno M, Nagano Y, Cao JW, Kagawa Y et al (1998) Creep and fatigue behavior in an enhanced SiC/SiC composite at high temperature. J Am Ceram Soc 81:2269–2277.  https://doi.org/10.1111/j.1151-2916.1998.tb02621.xCrossRefGoogle Scholar
  57. 57.
    Li LB (2014) Assessment of the interfacial properties from fatigue hysteresis loss energy in ceramic-matrix composites with different fiber preforms. Mater Sci Eng A 613:17–36.  https://doi.org/10.1016/j.msea.2014.06.092CrossRefGoogle Scholar
  58. 58.
    Wang YQ, Zhang LT, Cheng LF, Ma JQ, Zhang WH (2008) Tensile performance and damage evolution of a 2.5-D C/SiC composite characterized by acoustic emission. Appl Compos Mater 15:183–188.  https://doi.org/10.1007/s10443-008-9066-2CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Nanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations