Tensile Behavior of Ceramic-Matrix Composites

  • Longbiao LiEmail author


Under tensile loading, the fiber-reinforced ceramic-matrix composites (CMCs) exhibit obvious nonlinear behavior, due to the multiple damage mechanisms of matrix multicracking, fiber/matrix interface debonding and fibers failure. In this chapter, the micromechanical approach to predict the tensile stress–strain curves of fiber-reinforced CMCs is developed. When matrix cracking, fiber/matrix interface debonding, and fibers failure occur, the shear-lag model is adopted to analyze the microstress field of the damaged fiber-reinforced CMCs, i.e., the fiber and matrix axial stress distributions. Combining the shear-lag model with damage models of matrix statistical cracking, fracture mechanics fiber/matrix interface debonding criterion and Global Load Sharing (GLS) fibers failure criterion, the matrix cracking spacing, fiber/matrix interface debonding length, and fibers broken fraction are determined. The tensile stress–strain curves of fiber-reinforced CMCs corresponding to different damage stages are modeled. The tensile stress–strain curves of unidirectional, cross-ply, 2D, and 2.5D woven CMCs are predicted.


Ceramic-matrix composites (CMCs) Damage evolution Matrix multicracking Interface debonding Fibers failure 


  1. 1.
    Naslain R (2004) Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview. Compos Sci Technol 64(2):155–170. Scholar
  2. 2.
    Padture NP (2016) Advanced structural ceramics in aerospace propulsion. Nat Mater 15:804–809. Scholar
  3. 3.
    Ji FS, Dharani LR (1998) Non-axisymmetric matrix cracking and interface debonding with friction in ceramic composites. Appl Compos Mater 5(6):379–397. Scholar
  4. 4.
    Curtin WA (2000). Stress–strain behavior of brittle matrix composites. In: Comprehensive composite materials, vol 4. Elsevier Science Ltd., pp 47–76.
  5. 5.
    Li LB, Song YD (2010) An approach to estimate interface shear stress of ceramic matrix composites from hysteresis loops. Appl Compos Mater 17(3):309–328. Scholar
  6. 6.
    Li LB, Song YD, Sun ZG (2008) Influence of fiber Poisson contraction on matrix cracking development of ceramic matrix composites. J Aerosp Power 23(12):2196–2201Google Scholar
  7. 7.
    Li LB, Song YD, Sun ZG (2008) Uniaxial tensile behavior of unidirectional fiber reinforced ceramic matrix composites. Acta Mater Compos Sinica 25(4):154–160Google Scholar
  8. 8.
    Cox HL (1952) The elasticity and strength of paper and other fibrous materials. British J Appl Phys 3(3):72–79. Scholar
  9. 9.
    Hedgepeth JM, Dyke PD (1967) Local stress concentration in imperfect filamentary composite materials. J Compos Mater 1(3):294–304. Scholar
  10. 10.
    Dyke PD, Hedgepeth JM (1969) Stress concentration from single-filament failure in composite materials. Text Res J 39:618–626. Scholar
  11. 11.
    Zweben C (1974) An approximate method of analysis for notched unidirectional composites. Eng Fract Mech 6(1):1–10. Scholar
  12. 12.
    Budiansky B, Hutchinson JW, Evans AG (1986) Matrix fracture in fiber-reinforced ceramics. J Mech Phys Solids 34(2):167–189. Scholar
  13. 13.
    Marshall DB, Cox BN, Evans AG (1985) The mechanics of matrix cracking in brittle-matrix fiber composites. Acta Metall 33(11):2013–2021. Scholar
  14. 14.
    Aveston J, Cooper GA, Kelly A (1971) Single and multiple fracture. In: Properties of fiber composites: conference on proceedings. National Physical Laboratory, IPC, England, pp 15–26Google Scholar
  15. 15.
    Aveston J, Kelly A (1973) Theory of multiple fracture of fibrous composites. J Mater Sci 8(3):352–362. Scholar
  16. 16.
    Chiang YC (2001) On fiber debonding and matrix cracking in fiber-reinforced ceramics. Compos Sci Technol 61(2):1743–1756. Scholar
  17. 17.
    Chiang YC (2007) On a matrix cracking model using Coulomb’s friction law. Eng Fract Mech 74(10):1602–1616. Scholar
  18. 18.
    Li LB (2017) Synergistic effects of temperature and oxidation on matrix cracking in fiber-reinforced ceramic-matrix composites. Appl Compos Mater 24:691–715. Scholar
  19. 19.
    Li LB (2017) Modeling first matrix cracking stress of fiber-reinforced ceramic-matrix composites considering fiber fracture. Theor Appl Fract Mech 92:24–32. Scholar
  20. 20.
    Li LB (2017) Modeling matrix cracking of fiber-reinforced ceramic-matrix composites under oxidation environment at elevated temperature. Theor Appl Fract Mech 87:110–119. Scholar
  21. 21.
    Li LB (2017) Synergistic effects of fiber debonding and fracture on matrix cracking in fiber-reinforced ceramic-matrix composites. Mater Sci Eng A 682:482–490. Scholar
  22. 22.
    Cox BN, Marshall DB, Thouless MD (1989) Influence of statistical fiber strength distribution on matrix cracking in fiber composites. Acta Metall 37(7):1933–1943. Scholar
  23. 23.
    Marshall DB, Evans AG (1988) Influence of residual stress on the toughness of reinforced brittle materials. Mater Forum 11(1):304–312Google Scholar
  24. 24.
    Cox BN, Marshall DB (1991) Stable and unstable solutions for bridged cracks in various specimens. Acta Metall Mater 39(4):579–589. Scholar
  25. 25.
    Cox BN (1991) Extrinsic factors in the mechanics of bridged cracks. Acta Metall Mater 39(6):1189–1201. Scholar
  26. 26.
    Chiang YC, Wang ASD, Chou TW (1993) On matrix cracking in fiber reinforced ceramics. J Mech Phys Solids 41(7):1137–1154. Scholar
  27. 27.
    Chiang YC (2000) Tensile failure in fiber reinforced ceramic matrix composites. J Mater Sci 35(21):5449–5455. Scholar
  28. 28.
    Thouless MD, Evans AG (1988) Effects of pull-out on the mechanical properties of ceramic-matrix-composites. Acta Metall 36(3):517–522. Scholar
  29. 29.
    Cao HC, Bischoff E, Sbaizero O, Ruhle M, Evans AG, Marshall DB, Brennan J (1990) Effect of interfaces on the mechanical performance of fiber-reinforced brittle materials. J Am Ceram Soc 73(6):1691–1699. Scholar
  30. 30.
    Danchaivijit SD, Shetty DK (1993) Matrix cracking in ceramic matrix composites. J Am Ceram Soc 76(10):2497–2504. Scholar
  31. 31.
    Kim RY, Pagano NJ (1991) Crack initiation in unidirectional brittle-matrix composites. J Am Ceram Soc 74(5):1082–1090. Scholar
  32. 32.
    Barsoum MW, Kangutkar P, Wang ASD (1992) Matrix crack initiation in ceramic matrix composites part I: experiments and test results. Compos Sci Technol 44(3):257–269. Scholar
  33. 33.
    Lee JW, Daniel IM (1992) Deformation and failure of longitudinally loaded brittle-matrix composites. In: Grimes GC (ed) Proceedings of the tenth symposium on composite materials: testing and design, ASTM, pp 204–221.
  34. 34.
    Zok FW, Spearing SM (1992) Matrix crack spacing in brittle matrix composites. Acta Metall Mater 40(8):2033–2043. Scholar
  35. 35.
    Weitsman Y, Zhu H (1993) Multi-fracture of ceramic composites. J Mech Phys Solids 41(2):351–388. Scholar
  36. 36.
    Solti JP, Mall S, Robertson DD (1997) Modeling of matrix failure in ceramic matrix composites. J Compos Technol Research 19(1):29–40. Scholar
  37. 37.
    Curtin WA (1993) Multiple matrix cracking in brittle matrix composites. Acta Metall Mater 41(5):1369–1377. Scholar
  38. 38.
    Curtin WA (1999) Stochastic damage evolution and failure in fiber-reinforced composites. Adv Appl Mech 36:164–248. Scholar
  39. 39.
    Hsueh CH (1996) Crack-wake interface debonding criterion for fiber-reinforced ceramic composites. Acta Mater 44(6):2211–2216. Scholar
  40. 40.
    Gao YC, Mai YW, Cotterell B (1988) Fracture of fiber-reinforced materials. Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 39(4):550–572. Scholar
  41. 41.
    Sun YJ, Singh RN (1998) The generation of multiple matrix cracking and fiber-matrix interfacial debonding in a glass composite. Acta Mater 46(5):1657–1667. Scholar
  42. 42.
    Cao HC, Thouless MD (1990) Tensile tests of ceramic-matrix composites: theory and experiment. J Am Ceram Soc 73(7):2091–2094. Scholar
  43. 43.
    Sutcu M (1989) Weibull statistics applied to fiber failure in ceramic composites and work of fracture. Acta Metall 37(2):651–661. Scholar
  44. 44.
    Schwietert HR, Steif PS (1990) A theory for the ultimate strength of a brittle-matrix composites. J Mech Phys Solids 38(3):325–343. Scholar
  45. 45.
    Curtin WA (1991) Theory of mechanical properties of ceramic matrix composites. J Am Ceram Soc 74(11):2837–2845. Scholar
  46. 46.
    Solti JP, Mall S, Robertson DD (1995) Modeling damage in unidirectional ceramic matrix composites. Compos Sci Technol 54(1):55–66. Scholar
  47. 47.
    Liao K, Reifsnider KL (2000) A tensile strength model for unidirectional fiber-reinforced brittle matrix composite. Int J Fract 106(2):95–115. Scholar
  48. 48.
    Zhou SJ, Curtin WA (1995) Failure of fiber composites: a lattice Green function model. Acta Metall Mater 43(8):3093–3104. Scholar
  49. 49.
    Ibnabdeljalil M, Curtin WA (1997) Strength and reliability of fiber reinforced composites: localized load-sharing and associated size effects. Int J Solids Struct 34(21):2649–2668. Scholar
  50. 50.
    Beyerlein IJ, Phoenix SL (1996) Stress concentrations around multiple fiber breaks in an elastic matrix with local yielding or de-bonding using quadratic influence superposition. J Mech Phys Solids 44(12):1997–2039. Scholar
  51. 51.
    Dutton RE, Pagano NJ, Kim RY (2000) Modeling the ultimate tensile strength of unidirectional glass-matrix composites. J Am Ceram Soc 83(1):166–174. Scholar
  52. 52.
    Xia ZH, Curtin WA (2000) Toughness-to-brittle transitions in ceramic-matrix composites with increasing interfacial shear stress. Acta Mater 48(20):4879–4892. Scholar
  53. 53.
    Pryce AW, Smith PA (1992) Behavior of unidirectional and crossply ceramic matrix composites under quasi-static tensile loading. J Mater Sci 27(10):2695–2704. Scholar
  54. 54.
    Beyerle DS, Spearing SM, Zok FW, Evans AG (1992) Damage and failure in unidirectional ceramic-matrix composites. J Am Ceram Soc 75(10):2719–2725. Scholar
  55. 55.
    Kuo WS, Chou TW (1995) Multiple cracking of unidirectional and cross-ply ceramic matrix composites. J Am Ceram Soc 78(3):745–755. Scholar
  56. 56.
    Sørensen BF, Holmes JW (1996) Effects of loading rate on the monotonic tensile behavior of a continuous-fiber-reinforced glass-ceramic matrix composite. J Am Ceram Soc 79(2):313–320. Scholar
  57. 57.
    Okabe T, Komotori J, Shimizu M, Takeda N (1999) Mechanical behavior of sic fiber reinforced brittle-matrix composites. J Mater Sci 34(14):3405–3412. Scholar
  58. 58.
    Zawada LP, Butkus LM, Hartman GA (1991) Tensile and fatigue behavior of silicon carbide fiber-reinforced aluminosilicate glass. J Am Ceram Soc 74(11):2851–2858. Scholar
  59. 59.
    Li LB, Song YD, Sun YC (2015) Modeling tensile behavior of cross-ply C/SiC ceramic matrix composites. Mech Compos Mater 51(3):359–376. Scholar
  60. 60.
    Garrett KW, Bailey JE (1977) Multiple transverse fracture in 90° cross-ply laminates of a glass fiber-reinforced polyester. J Mater Sci 12(1):157–168. Scholar
  61. 61.
    Laws N, Dvorak GJ (1988) Progressive transverse cracking in composite laminates. J Compos Mater 22(10):900–916. Scholar
  62. 62.
    Fukunaga H, Chou TW, Peters PWM, Schulte K (1984) Probabilistic failure strength analysis of graphite/epoxy cross-ply laminates. J Compos Mater 18(4):339–356. Scholar
  63. 63.
    Beyerle DB, Spearing SM, Evans AG (1992) Damage mechanisms and the mechanical properties of a laminated 0/90 ceramic matrix composite. J Am Ceram Soc 75(12):3321–3330. Scholar
  64. 64.
    Karandikar P, Chou TW (1993) Characterization and modeling of microcracking and elastic moduli changes in Nicalon/CAS composites. Compos Sci Technol 46(3):253–263. Scholar
  65. 65.
    Wang SW, Parvizi-Majidi A (1992) Experimental characterization of the tensile behavior of nicalon fiber-reinforced calcium aluminosilicate composites. J Mater Sci 27(20):5483–5496. Scholar
  66. 66.
    Wang YQ, Zhang LT, Cheng LF. (2008). Tensile behavior of a 2D and 2.5D C/SiC composites fabricated by chemical vapor infiltration. J Chin Ceram Soc 36(8):1062–1068Google Scholar
  67. 67.
    Morscher GN (2004) Stress-dependent matrix cracking in 2d woven SiC-fiber reinforced melt-infiltrated SiC matrix composites. Compos Sci Technol 64(9):1311–1319. Scholar
  68. 68.
    Morscher GN, Singh M, Kiser JD, Freedman M, Bhatt R (2007) Modeling stress-dependent matrix cracking and stress–strain behavior in 2D woven SiC fiber reinforced CVI SiC matrix. Compos Sci Technol 67:1009–1017. Scholar
  69. 69.
    Li LB (2018) Modeling the monotonic and cyclic tensile stress–strain behaviour of 2D and 2.5D woven C/SiC ceramic-matrix composites. Mech Compos Mater 54(2):165–178.
  70. 70.
    Dalmaz A, Reynaud P, Rouby D, Fantozzi G (1996) Damage propagation in carbon/silicon carbide composites during tensile tests under the SEM. J Mater Sci 31:4213–4219. Scholar
  71. 71.
    Li LB, Song YD, Sun YC (2014) Modeling tensile behavior of unidirectional C/SiC ceramic matrix composites. Mech Compos Mater 49(6):659–672. Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Nanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations