Advertisement

Tensile Behavior of Ceramic-Matrix Composites

  • Longbiao LiEmail author
Chapter
  • 490 Downloads

Abstract

Under tensile loading, the fiber-reinforced ceramic-matrix composites (CMCs) exhibit obvious nonlinear behavior, due to the multiple damage mechanisms of matrix multicracking, fiber/matrix interface debonding and fibers failure. In this chapter, the micromechanical approach to predict the tensile stress–strain curves of fiber-reinforced CMCs is developed. When matrix cracking, fiber/matrix interface debonding, and fibers failure occur, the shear-lag model is adopted to analyze the microstress field of the damaged fiber-reinforced CMCs, i.e., the fiber and matrix axial stress distributions. Combining the shear-lag model with damage models of matrix statistical cracking, fracture mechanics fiber/matrix interface debonding criterion and Global Load Sharing (GLS) fibers failure criterion, the matrix cracking spacing, fiber/matrix interface debonding length, and fibers broken fraction are determined. The tensile stress–strain curves of fiber-reinforced CMCs corresponding to different damage stages are modeled. The tensile stress–strain curves of unidirectional, cross-ply, 2D, and 2.5D woven CMCs are predicted.

Keywords

Ceramic-matrix composites (CMCs) Damage evolution Matrix multicracking Interface debonding Fibers failure 

References

  1. 1.
    Naslain R (2004) Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview. Compos Sci Technol 64(2):155–170.  https://doi.org/10.1016/S0266-3538(03)00230-6CrossRefGoogle Scholar
  2. 2.
    Padture NP (2016) Advanced structural ceramics in aerospace propulsion. Nat Mater 15:804–809.  https://doi.org/10.1038/nmat4687CrossRefGoogle Scholar
  3. 3.
    Ji FS, Dharani LR (1998) Non-axisymmetric matrix cracking and interface debonding with friction in ceramic composites. Appl Compos Mater 5(6):379–397.  https://doi.org/10.1023/A:1008820315282CrossRefGoogle Scholar
  4. 4.
    Curtin WA (2000). Stress–strain behavior of brittle matrix composites. In: Comprehensive composite materials, vol 4. Elsevier Science Ltd., pp 47–76.  https://doi.org/10.1016/B0-08-042993-9/00088-7
  5. 5.
    Li LB, Song YD (2010) An approach to estimate interface shear stress of ceramic matrix composites from hysteresis loops. Appl Compos Mater 17(3):309–328.  https://doi.org/10.1007/s10443-009-9122-6CrossRefGoogle Scholar
  6. 6.
    Li LB, Song YD, Sun ZG (2008) Influence of fiber Poisson contraction on matrix cracking development of ceramic matrix composites. J Aerosp Power 23(12):2196–2201Google Scholar
  7. 7.
    Li LB, Song YD, Sun ZG (2008) Uniaxial tensile behavior of unidirectional fiber reinforced ceramic matrix composites. Acta Mater Compos Sinica 25(4):154–160Google Scholar
  8. 8.
    Cox HL (1952) The elasticity and strength of paper and other fibrous materials. British J Appl Phys 3(3):72–79.  https://doi.org/10.1088/0508-3443/3/3/302CrossRefGoogle Scholar
  9. 9.
    Hedgepeth JM, Dyke PD (1967) Local stress concentration in imperfect filamentary composite materials. J Compos Mater 1(3):294–304.  https://doi.org/10.1177/002199836700100305CrossRefGoogle Scholar
  10. 10.
    Dyke PD, Hedgepeth JM (1969) Stress concentration from single-filament failure in composite materials. Text Res J 39:618–626.  https://doi.org/10.1177/004051756903900702CrossRefGoogle Scholar
  11. 11.
    Zweben C (1974) An approximate method of analysis for notched unidirectional composites. Eng Fract Mech 6(1):1–10.  https://doi.org/10.1016/0013-7944(74)90042-3CrossRefGoogle Scholar
  12. 12.
    Budiansky B, Hutchinson JW, Evans AG (1986) Matrix fracture in fiber-reinforced ceramics. J Mech Phys Solids 34(2):167–189.  https://doi.org/10.1016/0022-5096(86)90035-9CrossRefGoogle Scholar
  13. 13.
    Marshall DB, Cox BN, Evans AG (1985) The mechanics of matrix cracking in brittle-matrix fiber composites. Acta Metall 33(11):2013–2021.  https://doi.org/10.1016/0001-6160(85)90124-5CrossRefGoogle Scholar
  14. 14.
    Aveston J, Cooper GA, Kelly A (1971) Single and multiple fracture. In: Properties of fiber composites: conference on proceedings. National Physical Laboratory, IPC, England, pp 15–26Google Scholar
  15. 15.
    Aveston J, Kelly A (1973) Theory of multiple fracture of fibrous composites. J Mater Sci 8(3):352–362.  https://doi.org/10.1007/BF00550155CrossRefGoogle Scholar
  16. 16.
    Chiang YC (2001) On fiber debonding and matrix cracking in fiber-reinforced ceramics. Compos Sci Technol 61(2):1743–1756.  https://doi.org/10.1016/S0266-3538(01)00078-1CrossRefGoogle Scholar
  17. 17.
    Chiang YC (2007) On a matrix cracking model using Coulomb’s friction law. Eng Fract Mech 74(10):1602–1616.  https://doi.org/10.1016/j.engfracmech.2006.09.006CrossRefGoogle Scholar
  18. 18.
    Li LB (2017) Synergistic effects of temperature and oxidation on matrix cracking in fiber-reinforced ceramic-matrix composites. Appl Compos Mater 24:691–715.  https://doi.org/10.1007/s10443-016-9535-yCrossRefGoogle Scholar
  19. 19.
    Li LB (2017) Modeling first matrix cracking stress of fiber-reinforced ceramic-matrix composites considering fiber fracture. Theor Appl Fract Mech 92:24–32.  https://doi.org/10.1016/j.tafmec.2017.05.004CrossRefGoogle Scholar
  20. 20.
    Li LB (2017) Modeling matrix cracking of fiber-reinforced ceramic-matrix composites under oxidation environment at elevated temperature. Theor Appl Fract Mech 87:110–119.  https://doi.org/10.1016/j.tafmec.2016.11.003CrossRefGoogle Scholar
  21. 21.
    Li LB (2017) Synergistic effects of fiber debonding and fracture on matrix cracking in fiber-reinforced ceramic-matrix composites. Mater Sci Eng A 682:482–490.  https://doi.org/10.1016/j.msea.2016.11.077CrossRefGoogle Scholar
  22. 22.
    Cox BN, Marshall DB, Thouless MD (1989) Influence of statistical fiber strength distribution on matrix cracking in fiber composites. Acta Metall 37(7):1933–1943.  https://doi.org/10.1016/0001-6160(89)90078-3CrossRefGoogle Scholar
  23. 23.
    Marshall DB, Evans AG (1988) Influence of residual stress on the toughness of reinforced brittle materials. Mater Forum 11(1):304–312Google Scholar
  24. 24.
    Cox BN, Marshall DB (1991) Stable and unstable solutions for bridged cracks in various specimens. Acta Metall Mater 39(4):579–589.  https://doi.org/10.1016/0956-7151(91)90126-LCrossRefGoogle Scholar
  25. 25.
    Cox BN (1991) Extrinsic factors in the mechanics of bridged cracks. Acta Metall Mater 39(6):1189–1201.  https://doi.org/10.1016/0956-7151(91)90207-HCrossRefGoogle Scholar
  26. 26.
    Chiang YC, Wang ASD, Chou TW (1993) On matrix cracking in fiber reinforced ceramics. J Mech Phys Solids 41(7):1137–1154.  https://doi.org/10.1016/0022-5096(93)90087-VCrossRefGoogle Scholar
  27. 27.
    Chiang YC (2000) Tensile failure in fiber reinforced ceramic matrix composites. J Mater Sci 35(21):5449–5455.  https://doi.org/10.1023/A:1004868928586CrossRefGoogle Scholar
  28. 28.
    Thouless MD, Evans AG (1988) Effects of pull-out on the mechanical properties of ceramic-matrix-composites. Acta Metall 36(3):517–522.  https://doi.org/10.1016/0001-6160(88)90083-1CrossRefGoogle Scholar
  29. 29.
    Cao HC, Bischoff E, Sbaizero O, Ruhle M, Evans AG, Marshall DB, Brennan J (1990) Effect of interfaces on the mechanical performance of fiber-reinforced brittle materials. J Am Ceram Soc 73(6):1691–1699.  https://doi.org/10.1111/j.1151-2916.1990.tb09814.xCrossRefGoogle Scholar
  30. 30.
    Danchaivijit SD, Shetty DK (1993) Matrix cracking in ceramic matrix composites. J Am Ceram Soc 76(10):2497–2504.  https://doi.org/10.1111/j.1151-2916.1993.tb03972.xCrossRefGoogle Scholar
  31. 31.
    Kim RY, Pagano NJ (1991) Crack initiation in unidirectional brittle-matrix composites. J Am Ceram Soc 74(5):1082–1090.  https://doi.org/10.1111/j.1151-2916.1991.tb04346.xCrossRefGoogle Scholar
  32. 32.
    Barsoum MW, Kangutkar P, Wang ASD (1992) Matrix crack initiation in ceramic matrix composites part I: experiments and test results. Compos Sci Technol 44(3):257–269.  https://doi.org/10.1016/0266-3538(92)90016-VCrossRefGoogle Scholar
  33. 33.
    Lee JW, Daniel IM (1992) Deformation and failure of longitudinally loaded brittle-matrix composites. In: Grimes GC (ed) Proceedings of the tenth symposium on composite materials: testing and design, ASTM, pp 204–221.  https://doi.org/10.1520/stp20156s
  34. 34.
    Zok FW, Spearing SM (1992) Matrix crack spacing in brittle matrix composites. Acta Metall Mater 40(8):2033–2043.  https://doi.org/10.1016/0956-7151(92)90189-LCrossRefGoogle Scholar
  35. 35.
    Weitsman Y, Zhu H (1993) Multi-fracture of ceramic composites. J Mech Phys Solids 41(2):351–388.  https://doi.org/10.1016/0022-5096(93)90012-5CrossRefGoogle Scholar
  36. 36.
    Solti JP, Mall S, Robertson DD (1997) Modeling of matrix failure in ceramic matrix composites. J Compos Technol Research 19(1):29–40.  https://doi.org/10.1520/CTR10011JCrossRefGoogle Scholar
  37. 37.
    Curtin WA (1993) Multiple matrix cracking in brittle matrix composites. Acta Metall Mater 41(5):1369–1377.  https://doi.org/10.1016/0956-7151(93)90246-OCrossRefGoogle Scholar
  38. 38.
    Curtin WA (1999) Stochastic damage evolution and failure in fiber-reinforced composites. Adv Appl Mech 36:164–248.  https://doi.org/10.1016/S0065-2156(08)70186-8CrossRefGoogle Scholar
  39. 39.
    Hsueh CH (1996) Crack-wake interface debonding criterion for fiber-reinforced ceramic composites. Acta Mater 44(6):2211–2216.  https://doi.org/10.1016/1359-6454(95)00369-XCrossRefGoogle Scholar
  40. 40.
    Gao YC, Mai YW, Cotterell B (1988) Fracture of fiber-reinforced materials. Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 39(4):550–572.  https://doi.org/10.1007/BF00948962CrossRefGoogle Scholar
  41. 41.
    Sun YJ, Singh RN (1998) The generation of multiple matrix cracking and fiber-matrix interfacial debonding in a glass composite. Acta Mater 46(5):1657–1667.  https://doi.org/10.1016/S1359-6454(97)00347-9CrossRefGoogle Scholar
  42. 42.
    Cao HC, Thouless MD (1990) Tensile tests of ceramic-matrix composites: theory and experiment. J Am Ceram Soc 73(7):2091–2094.  https://doi.org/10.1111/j.1151-2916.1990.tb05273.xCrossRefGoogle Scholar
  43. 43.
    Sutcu M (1989) Weibull statistics applied to fiber failure in ceramic composites and work of fracture. Acta Metall 37(2):651–661.  https://doi.org/10.1016/0001-6160(89)90249-6CrossRefGoogle Scholar
  44. 44.
    Schwietert HR, Steif PS (1990) A theory for the ultimate strength of a brittle-matrix composites. J Mech Phys Solids 38(3):325–343.  https://doi.org/10.1016/0022-5096(90)90002-LCrossRefGoogle Scholar
  45. 45.
    Curtin WA (1991) Theory of mechanical properties of ceramic matrix composites. J Am Ceram Soc 74(11):2837–2845.  https://doi.org/10.1111/j.1151-2916.1991.tb06852.xCrossRefGoogle Scholar
  46. 46.
    Solti JP, Mall S, Robertson DD (1995) Modeling damage in unidirectional ceramic matrix composites. Compos Sci Technol 54(1):55–66.  https://doi.org/10.1016/0266-3538(95)00041-0CrossRefGoogle Scholar
  47. 47.
    Liao K, Reifsnider KL (2000) A tensile strength model for unidirectional fiber-reinforced brittle matrix composite. Int J Fract 106(2):95–115.  https://doi.org/10.1023/A:1007645817753CrossRefGoogle Scholar
  48. 48.
    Zhou SJ, Curtin WA (1995) Failure of fiber composites: a lattice Green function model. Acta Metall Mater 43(8):3093–3104.  https://doi.org/10.1016/0956-7151(95)00003-ECrossRefGoogle Scholar
  49. 49.
    Ibnabdeljalil M, Curtin WA (1997) Strength and reliability of fiber reinforced composites: localized load-sharing and associated size effects. Int J Solids Struct 34(21):2649–2668.  https://doi.org/10.1016/S0020-7683(96)00179-5CrossRefGoogle Scholar
  50. 50.
    Beyerlein IJ, Phoenix SL (1996) Stress concentrations around multiple fiber breaks in an elastic matrix with local yielding or de-bonding using quadratic influence superposition. J Mech Phys Solids 44(12):1997–2039.  https://doi.org/10.1016/S0022-5096(96)00068-3CrossRefGoogle Scholar
  51. 51.
    Dutton RE, Pagano NJ, Kim RY (2000) Modeling the ultimate tensile strength of unidirectional glass-matrix composites. J Am Ceram Soc 83(1):166–174.  https://doi.org/10.1111/j.1151-2916.2000.tb01166.xCrossRefGoogle Scholar
  52. 52.
    Xia ZH, Curtin WA (2000) Toughness-to-brittle transitions in ceramic-matrix composites with increasing interfacial shear stress. Acta Mater 48(20):4879–4892.  https://doi.org/10.1016/S1359-6454(00)00291-3CrossRefGoogle Scholar
  53. 53.
    Pryce AW, Smith PA (1992) Behavior of unidirectional and crossply ceramic matrix composites under quasi-static tensile loading. J Mater Sci 27(10):2695–2704.  https://doi.org/10.1007/BF00540692CrossRefGoogle Scholar
  54. 54.
    Beyerle DS, Spearing SM, Zok FW, Evans AG (1992) Damage and failure in unidirectional ceramic-matrix composites. J Am Ceram Soc 75(10):2719–2725.  https://doi.org/10.1111/j.1151-2916.1992.tb05495.xCrossRefGoogle Scholar
  55. 55.
    Kuo WS, Chou TW (1995) Multiple cracking of unidirectional and cross-ply ceramic matrix composites. J Am Ceram Soc 78(3):745–755.  https://doi.org/10.1111/j.1151-2916.1995.tb08242.xCrossRefGoogle Scholar
  56. 56.
    Sørensen BF, Holmes JW (1996) Effects of loading rate on the monotonic tensile behavior of a continuous-fiber-reinforced glass-ceramic matrix composite. J Am Ceram Soc 79(2):313–320.  https://doi.org/10.1111/j.1151-2916.1996.tb08122.xCrossRefGoogle Scholar
  57. 57.
    Okabe T, Komotori J, Shimizu M, Takeda N (1999) Mechanical behavior of sic fiber reinforced brittle-matrix composites. J Mater Sci 34(14):3405–3412.  https://doi.org/10.1023/A:1004637300310CrossRefGoogle Scholar
  58. 58.
    Zawada LP, Butkus LM, Hartman GA (1991) Tensile and fatigue behavior of silicon carbide fiber-reinforced aluminosilicate glass. J Am Ceram Soc 74(11):2851–2858.  https://doi.org/10.1111/j.1151-2916.1991.tb06854.xCrossRefGoogle Scholar
  59. 59.
    Li LB, Song YD, Sun YC (2015) Modeling tensile behavior of cross-ply C/SiC ceramic matrix composites. Mech Compos Mater 51(3):359–376.  https://doi.org/10.1007/s11029-015-9507-6CrossRefGoogle Scholar
  60. 60.
    Garrett KW, Bailey JE (1977) Multiple transverse fracture in 90° cross-ply laminates of a glass fiber-reinforced polyester. J Mater Sci 12(1):157–168.  https://doi.org/10.1007/BF00738481CrossRefGoogle Scholar
  61. 61.
    Laws N, Dvorak GJ (1988) Progressive transverse cracking in composite laminates. J Compos Mater 22(10):900–916.  https://doi.org/10.1177/002199838802201001CrossRefGoogle Scholar
  62. 62.
    Fukunaga H, Chou TW, Peters PWM, Schulte K (1984) Probabilistic failure strength analysis of graphite/epoxy cross-ply laminates. J Compos Mater 18(4):339–356.  https://doi.org/10.1177/002199838401800403CrossRefGoogle Scholar
  63. 63.
    Beyerle DB, Spearing SM, Evans AG (1992) Damage mechanisms and the mechanical properties of a laminated 0/90 ceramic matrix composite. J Am Ceram Soc 75(12):3321–3330.  https://doi.org/10.1111/j.1151-2916.1992.tb04428.xCrossRefGoogle Scholar
  64. 64.
    Karandikar P, Chou TW (1993) Characterization and modeling of microcracking and elastic moduli changes in Nicalon/CAS composites. Compos Sci Technol 46(3):253–263.  https://doi.org/10.1016/0266-3538(93)90159-ECrossRefGoogle Scholar
  65. 65.
    Wang SW, Parvizi-Majidi A (1992) Experimental characterization of the tensile behavior of nicalon fiber-reinforced calcium aluminosilicate composites. J Mater Sci 27(20):5483–5496.  https://doi.org/10.1007/BF00541610CrossRefGoogle Scholar
  66. 66.
    Wang YQ, Zhang LT, Cheng LF. (2008). Tensile behavior of a 2D and 2.5D C/SiC composites fabricated by chemical vapor infiltration. J Chin Ceram Soc 36(8):1062–1068Google Scholar
  67. 67.
    Morscher GN (2004) Stress-dependent matrix cracking in 2d woven SiC-fiber reinforced melt-infiltrated SiC matrix composites. Compos Sci Technol 64(9):1311–1319.  https://doi.org/10.1016/j.compscitech.2003.10.022CrossRefGoogle Scholar
  68. 68.
    Morscher GN, Singh M, Kiser JD, Freedman M, Bhatt R (2007) Modeling stress-dependent matrix cracking and stress–strain behavior in 2D woven SiC fiber reinforced CVI SiC matrix. Compos Sci Technol 67:1009–1017.  https://doi.org/10.1016/j.compscitech.2006.06.007CrossRefGoogle Scholar
  69. 69.
    Li LB (2018) Modeling the monotonic and cyclic tensile stress–strain behaviour of 2D and 2.5D woven C/SiC ceramic-matrix composites. Mech Compos Mater 54(2):165–178.  https://doi.org/10.1007/s11029-018-9729-5
  70. 70.
    Dalmaz A, Reynaud P, Rouby D, Fantozzi G (1996) Damage propagation in carbon/silicon carbide composites during tensile tests under the SEM. J Mater Sci 31:4213–4219.  https://doi.org/10.1007/BF00356441CrossRefGoogle Scholar
  71. 71.
    Li LB, Song YD, Sun YC (2014) Modeling tensile behavior of unidirectional C/SiC ceramic matrix composites. Mech Compos Mater 49(6):659–672.  https://doi.org/10.1007/s11029-013-9382-yCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Nanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations