Skip to main content

5G Mobile Communication Systems: Fundamentals, Challenges, and Key Technologies

  • Chapter
  • First Online:
Smart Grids and Their Communication Systems

Part of the book series: Energy Systems in Electrical Engineering ((ESIEE))

Abstract

Wireless and mobile communication technologies exhibit remarkable changes in every decade. The necessity of these changes is based on the changing user demands and innovations offered by the emerging technologies. This chapter provides information on the current situation of fifth generation (5G) mobile communication systems. Before discussing the details of the 5G networks, the evolution of mobile communication systems is considered from first generation to fourth generation systems. The advantages and weaknesses of each generation are explained comparatively. Later, technical infrastructure developments of the 5G communication systems have been evaluated in the context of system requirements and new experiences of users such as 4K video streaming, tactile Internet, and augmented reality. After the main goals and requirements of the 5G networks are described, the planned targets to be provided in real applications by this new generation systems are clarified. In addition, different usage scenarios and minimum requirements for the ITU-2020 are evaluated. On the other hand, there are several challenges to be overcome for achieving the intended purpose of 5G communication systems. These challenges and potential solutions for them are described in the proceeding subsections of the chapter. Furthermore, massive multiple-input multiple-output (MIMO), millimeter wave (mmWave), mmWave massive MIMO, and beamforming techniques are clarified in a detail which are taken into account as promising key technologies for the 5G networks. Besides, potential application areas and application examples of the 5G communication systems are covered at the end of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Commission of the European Communities, Exploiting the Employment Potential of ICTs (Staff Working Document, Strasbourg, 2012)

    Google Scholar 

  2. C.X. Wang et al., Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun. Mag. 52(2), 122–130 (2014)

    Article  Google Scholar 

  3. D. Warren, C. Dewar, Understanding 5G: Perspectives on future technological advancements in mobile, in GSMA Intelligence (2014) (Technical report)

    Google Scholar 

  4. A. Gupta, R.K. Jha, A survey of 5G network: architecture and emerging technologies. IEEE Access 3, 1206–1232 (2015)

    Article  Google Scholar 

  5. J. Rodriguez (ed.), Fundamentals of 5G Mobile Networks, First Published (Wiley, United Kingdom, 2015)

    Google Scholar 

  6. R. Vannithamby, S. Talwar (eds.), Towards 5G: Applications, Requirements & Candidate Technologies (Wiley, United Kingdom, 2017)

    Google Scholar 

  7. Z. Pi, F. Khan, An introduction to millimeter-wave mobile broadband systems. IEEE Commun. Mag. 49(6), 101–107 (2011)

    Article  Google Scholar 

  8. T.S. Rappaport, J.N. Murdock, F. Gutierrez, State of the art in 60-GHz integrated circuits and systems for wireless communications. Proc. IEEE 99(8), 1390–1436 (2011)

    Article  Google Scholar 

  9. T.S. Rappaport et al., Millimeter wave mobile communications for 5G cellular: it will work! IEEE Access 1, 335–349 (2013)

    Article  Google Scholar 

  10. C. Han et al., Green radio: radio techniques to enable energy-efficient wireless networks. IEEE Commun. Mag. 49(6), 46–54 (2011)

    Article  Google Scholar 

  11. ITU-R, IMT Vision—Framework and Overall Objectives of the Future Development of IMT for 2020 and Beyond (Switzerland, M.2083-0, 2015)

    Google Scholar 

  12. NTT Docomo, 5G Radio Access: Requirements, Concept and Technologies. DOCOMO 5G White Paper (2014)

    Google Scholar 

  13. ITU-R, Naming for International Mobile Telecommunications. Resolution ITU-R 56-2 (2015)

    Google Scholar 

  14. ITU-R, Minimum Requirements Related to Technical Performance for IMT-2020 Radio Interface(s). Document 5/40-E (2017)

    Google Scholar 

  15. METIS-II, Refined Scenarios and Requirements, Consolidated Test Cases, and Qualitative Techno-Economic Assessment. ICT-671680 (2016)

    Google Scholar 

  16. M. Shafi et al., 5G: a tutorial overview of standards, trials, challenges, deployment, and practice. IEEE J. Sel. Areas Commun. 35(6), 1201–1221 (2017)

    Article  Google Scholar 

  17. P. Marsch et al., 5G radio access network architecture: design guidelines and key considerations. IEEE Commun. Mag. 54(11), 24–32 (2016)

    Article  Google Scholar 

  18. Y. Kishiyama, A. Benjebbour, T. Nakamura, H. Ishii, Future steps of LTE-A: evolution toward integration of local area and wide area systems. IEEE Wirel. Commun. 20(1), 12–18 (2013)

    Article  Google Scholar 

  19. P.K. Agyapong, M. Iwamura, D. Staehle, W. Kiess, A. Benjebbour, Design considerations for a 5G network architecture. IEEE Commun. Mag. 52(11), 65–75 (2014)

    Article  Google Scholar 

  20. N. Panwar, S. Sharma, A.K. Singh, A survey on 5G: The next generation of mobile communication. Phys. Commun. 18, 64–84 (2016)

    Article  Google Scholar 

  21. N. Bhushan et al., Network densification: the dominant theme for wireless evolution into 5G. IEEE Commun. Mag. 52(2), 82–89 (2014)

    Article  Google Scholar 

  22. I. Chih-Lin, C. Rowell, S. Han, Z. Xu, G. Li, Z. Pan, Toward green and soft: a 5G perspective. IEEE Commun. Mag. 52(2), 66–73 (2014)

    Google Scholar 

  23. X. Zhang et al., Macro-assisted data-only carrier for 5G green cellular systems. IEEE Commun. Mag. 53(5), 223–231 (2015)

    Article  Google Scholar 

  24. R.Q. Hu, Y. Qian, An energy efficient and spectrum efficient wireless heterogeneous network framework for 5G systems. IEEE Commun. Mag. 52(5), 94–101 (2014)

    Article  Google Scholar 

  25. Y. Liu, Y. Zhang, R. Yu, S. Xie, Integrated energy and spectrum harvesting for 5G wireless communications. IEEE Netw. 29(3), 75–81 (2015)

    Article  Google Scholar 

  26. Z.E. Ankarali, B. Peköz, H. Arslan, Flexible radio access beyond 5G: a future projection on waveform, numerology, and frame design principles. IEEE Access 5, 18295–18309 (2017)

    Article  Google Scholar 

  27. L. Pierucci, The quality of experience perspective toward 5G technology. IEEE Wirel. Commun. 22(4), 10–16 (2015)

    Article  Google Scholar 

  28. L. Wei, R.Q. Hu, Y. Qian, G. Wu, Key elements to enable millimeter wave communications for 5G wireless systems. IEEE Wirel. Commun. 21(6), 136–143 (2014)

    Article  Google Scholar 

  29. S. Shi, W. Yang, J. Zhang, Z. Chang, Review of key technologies of 5G wireless communication system. MATEC Web Conf. 22, 01005 (2015)

    Article  Google Scholar 

  30. 3GPP, Physical Channels and Modulation (Release 11), TSGR-0136211v910 (2010)

    Google Scholar 

  31. T.L. Marzetta, How much training is required for multiuser Mimo? in 2006 Fortieth Asilomar Conference on Signals, Systems and Computers (2006), pp. 359–363

    Google Scholar 

  32. A.L. Swindlehurst, E. Ayanoglu, P. Heydari, F. Capolino, Millimeter-wave massive MIMO: the next wireless revolution? IEEE Commun. Mag. 52(9), 56–62 (2014)

    Article  Google Scholar 

  33. L. Lu, G.Y. Li, A.L. Swindlehurst, A. Ashikhmin, R. Zhang, An overview of massive MIMO: benefits and challenges. IEEE J. Sel. Top. Signal Process. 8(5), 742–758 (2014)

    Article  Google Scholar 

  34. E.G. Larsson, O. Edfors, F. Tufvesson, T.L. Marzetta, Massive MIMO for next generation wireless systems. IEEE Commun. Mag. 52(2), 186–195 (2014)

    Article  Google Scholar 

  35. D. Liu et al., User association in 5G networks: a survey and an outlook. IEEE Commun. Surv. Tutor. 18(2), 1018–1044 (2016)

    Google Scholar 

  36. E. Björnson, E.G. Larsson, T.L. Marzetta, Massive MIMO: ten myths and one critical question. IEEE Commun. Mag. 54(2), 114–123 (2016)

    Article  Google Scholar 

  37. H.Q. Ngo, E.G. Larsson, T.L. Marzetta, Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Trans. Commun. 61(4), 1436–1449 (2013)

    Article  Google Scholar 

  38. J. Hoydis, S. ten Brink, M. Debbah, Massive MIMO in the UL/DL of cellular networks: how many antennas do we need? IEEE J. Sel. Areas Commun. 31(2), 160–171 (2013)

    Article  Google Scholar 

  39. V. Jungnickel et al., The role of small cells, coordinated multipoint, and massive MIMO in 5G. IEEE Commun. Mag. 52(5), 44–51 (2014)

    Article  Google Scholar 

  40. F.W. Vook, A. Ghosh, T.A. Thomas, MIMO and beamforming solutions for 5G technology, in 2014 IEEE MTT-S International Microwave Symposium (IMS2014) (2014), pp. 1–4

    Google Scholar 

  41. Y. Yu, P.G.M. Baltus, A.H.M. van Roermund, Integrated 60 GHz RF Beamforming in CMOS (Springer, Dordrecht, 2011)

    Book  Google Scholar 

  42. Z. Gao, L. Dai, D. Mi, Z. Wang, M.A. Imran, M.Z. Shakir, MmWave massive-MIMO-based wireless backhaul for the 5G ultra-dense network. IEEE Wirel. Commun. 22(5), 13–21 (2015)

    Article  Google Scholar 

  43. IEEE Standard for Information technology–Telecommunications and information exchange between systems–Local and metropolitan area networks–Specific requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band. IEEE Std 80211ad-2012 Amend. IEEE Std 80211-2012 Amend. IEEE Std 80211ae-2012 IEEE Std 80211aa-2012, pp. 1–628 (2012)

    Google Scholar 

  44. D. Wu, J. Wang, Y. Cai, M. Guizani, Millimeter-wave multimedia communications: challenges, methodology, and applications. IEEE Commun. Mag. 53(1), 232–238 (2015)

    Article  Google Scholar 

  45. N. Guo, R.C. Qiu, S.S. Mo, K. Takahashi, 60-GHz millimeter-wave radio: principle, technology, and new results. EURASIP J. Wirel. Commun. Netw. 2007, 1–8 (2007)

    Article  Google Scholar 

  46. R.C. Daniels, R.W.H. Jr, 60 GHz wireless communications: emerging requirements and design recommendations. IEEE Veh. Technol. Mag. 2(3), 41–50 (2007)

    Article  Google Scholar 

  47. H. Sawada, H. Nakase, K. Sato, H. Harada, A sixty GHz vehicle area network for multimedia communications. IEEE J. Sel. Areas Commun. 27(8), 1500–1506 (2009)

    Article  Google Scholar 

  48. S. Mumtaz, J. Rodriguez, L. Dai (eds.), mmWave Massive MIMO: A Paradigm for 5G (Academic Press is an imprint of Elsevier, United Kingdom , San Diego, CA, 2017)

    Google Scholar 

  49. H. Shokri-Ghadikolaei, C. Fischione, G. Fodor, P. Popovski, M. Zorzi, Millimeter wave cellular networks: a MAC layer perspective. IEEE Trans. Commun. 63(10), 3437–3458 (2015)

    Article  Google Scholar 

  50. S. Sun, T.S. Rappaport, R.W. Heath, A. Nix, S. Rangan, MIMO for millimeter-wave wireless communications: beamforming, spatial multiplexing, or both? IEEE Commun. Mag. 52(12), 110–121 (2014)

    Article  Google Scholar 

  51. V. Venkateswaran, A.J. van der Veen, Analog beamforming in MIMO communications with phase shift networks and online channel estimation. IEEE Trans. Signal Process. 58(8), 4131–4143 (2010)

    Article  MathSciNet  Google Scholar 

  52. H. Shokri-Ghadikolaei, L. Gkatzikis, C. Fischione, Beam-searching and transmission scheduling in millimeter wave communications, in 2015 IEEE International Conference on Communications (ICC) (2015), pp. 1292–1297

    Google Scholar 

  53. J.G. Andrews et al., What will 5G be? IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014)

    Article  Google Scholar 

  54. T. Kim, J. Park, J.-Y. Seol, S. Jeong, J. Cho, W. Roh, Tens of Gbps support with mmWave beamforming systems for next generation communications, in 2013 IEEE Global Communications Conference (GLOBECOM) (2013), pp. 3685–3690

    Google Scholar 

  55. A. Alkhateeb, J. Mo, N. Gonzalez-Prelcic, R.W. Heath, MIMO precoding and combining solutions for millimeter-wave systems. IEEE Commun. Mag. 52(12), 122–131 (2014)

    Article  Google Scholar 

  56. J. Mo, R.W. Heath, High SNR capacity of millimeter wave MIMO systems with one-bit quantization, in 2014 Information Theory and Applications Workshop (ITA) (2014), pp. 1–5

    Google Scholar 

  57. S. Han, I. Chih-Lin, Z. Xu, C. Rowell, Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G. IEEE Commun. Mag. 53(1), 186–194 (2015)

    Article  Google Scholar 

  58. T. Obara, S. Suyama, J. Shen, Y. Okumura, Joint fixed beamforming and eigenmode precoding for super high bit rate massive MIMO systems using higher frequency bands, in 2014 IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC) (2014), pp. 607–611

    Google Scholar 

  59. H. Ghauch, M. Bengtsson, T. Kim, M. Skoglund, Subspace estimation and decomposition for hybrid analog-digital millimetre-wave MIMO systems, in 2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) (2015), pp. 395–399

    Google Scholar 

  60. O.E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, R.W. Heath, Spatially sparse precoding in millimeter wave MIMO systems. IEEE Trans. Wirel. Commun. 13(3), 1499–1513 (2014)

    Article  Google Scholar 

  61. G. Araniti, M. Condoluci, P. Scopelliti, A. Molinaro, A. Iera, Multicasting over emerging 5G networks: challenges and perspectives. IEEE Netw. 31(2), 80–89 (2017)

    Article  Google Scholar 

  62. M. Agiwal, A. Roy, N. Saxena, Next generation 5G wireless networks: a comprehensive survey. IEEE Commun. Surv. Tutor. 18(3), 1617–1655 (2016)

    Article  Google Scholar 

  63. Y. Kabalci, A survey on smart metering and smart grid communication. Renew. Sustain. Energy Rev. 57, 302–318 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by The Scientific and Technological Research Council of Turkey (TUBITAK) under BIDEB-2219 program. Dr. Yasin Kabalci acknowledges to the TUBITAK for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasin Kabalci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kabalci, Y. (2019). 5G Mobile Communication Systems: Fundamentals, Challenges, and Key Technologies. In: Kabalci, E., Kabalci, Y. (eds) Smart Grids and Their Communication Systems. Energy Systems in Electrical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-1768-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1768-2_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1767-5

  • Online ISBN: 978-981-13-1768-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics