Skip to main content

Application of Semi-physical Verification Technology in Other Areas of IOT

  • Chapter
  • First Online:
Semi-physical Verification Technology for Dynamic Performance of Internet of Things System

Abstract

The above chapters focus on the semi-physical verification technology in the field of RFID system. With the continuous development of technology, the semi-physical verification technology is not only widely used in the field of RFID system, but also promoted in other fields, such as internet of vehicles (IOV), navigation and structural health monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mallik S (2014) Intelligent transportation system. Int J Civil Eng Res 5(4):367–372

    Google Scholar 

  2. Zhang W, Xi X (2016) The innovation and development of internet of vehicles. China Commun 13(5):122–127

    Article  Google Scholar 

  3. Tang L (2013) Vehicle networking technology and application. Science Press, Beijing

    Google Scholar 

  4. Wang L, Tao S, Lin H et al (2015) Multi-mode electronic vehicle identification in the scene of multi-lane free flow. In: International conference on connected vehicles and expo (ICCVE), Shenzhen, China, Oct 2015, pp 360–361

    Google Scholar 

  5. Ministry of Industry and Information Technology of the People’s Republic of China (2011) Internet of things “Twelfth Five Year Plan” for development

    Google Scholar 

  6. Ministry of Transport of the People’s Republic of China (2014) Measures for the dynamic supervision and administration of road transport vehicles

    Google Scholar 

  7. Ministry of Industry and Information Technology of the People’s Republic of China (2015) Internet of things innovation plan of action (2015–2020)

    Google Scholar 

  8. Marais H, Grobler MJ, Holm JEW (2013) Modeling of an RFID-based electronic vehicle identification system. In: AFRICON conference, Pointe aux Piments, Mauritius, Sept 2013, pp 303–307

    Google Scholar 

  9. Colella R, Catarinucci L, Coppola P et al (2016) Measurement platform for electromagnetic characterization and performance evaluation of UHF RFID tags. IEEE Trans Instrum Meas 65(4):905–914

    Article  Google Scholar 

  10. Hu H, Li B, Chen X et al (2016) Adaptability evaluation of electronic vehicle identification in urban traffic: a case study of Beijing. Tehički vjesnik 23(1):171–179

    Google Scholar 

  11. Maglaras LA, Al-Bayatti AH, He Y et al (2016) Social internet of vehicles for smart cities. J Sens Actuator Netw 5(1):3

    Article  Google Scholar 

  12. Center China Article Coding (2003) Barcode technology and application. Tsinghua University Press, Beijing

    Google Scholar 

  13. Furness A (2000) Machine-readable data carriers—a brief introduction to automatic identification and data capture. Assembly Autom 20(1):28–34

    Article  Google Scholar 

  14. Swartz J, Wang YP (1990) Fundamentals of barcode information theory. Computer 23(4):74–86

    Article  Google Scholar 

  15. National Quality and Technical Supervision (2000) People’s Republic of China national standard barcode terminology. China Standard Press, Beijing

    Google Scholar 

  16. GB/T 23704-2009, Information technology. Automatic identification and data acquisition techniques. Verification of two dimensional barcode symbol printing quality

    Google Scholar 

  17. Chen C, Kot AC, Yang H (2013) A two-stage quality measure for mobile phone captured 2D barcode images. Pattern Recogn 46(9):2588–2598

    Article  Google Scholar 

  18. Chen C, Kot AC, Yang H (2010) A quality measure of mobile phone captured 2D barcode images. In: IEEE international conference on image processing, Hong Kong, Sept 2010, pp 329–332

    Google Scholar 

  19. Yang H, Kot AC, Jiang X (2012) Binarization of low-quality barcode images captured by mobile phones using local window of adaptive location and size. IEEE Trans Image Process 21(1):418–425

    Article  MathSciNet  Google Scholar 

  20. Sheng HL (2011) High-speed barcode quality online detection technology. Huazhong University of Science and Technology, Wuhan

    Google Scholar 

  21. Xiu JH, Huang P, Li J et al (2012) Radiometric calibration of large area array color CCD aerial mapping camera. Guangxue Jingmi Gongcheng (Opt Precis Eng) 20(6):1365–1373

    Google Scholar 

  22. Chander G, Markham BL, Helder DL (2009) Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens Environ 113(5):893–903

    Article  Google Scholar 

  23. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    Article  Google Scholar 

  24. Chaki N, Shaikh SH, Saeed K (2014) A comprehensive survey on image binarization techniques. Springer India, New Delhi

    Book  Google Scholar 

  25. Wu J, Yang Z, Han D et al (2010) 2D barcode image binarization based on wavelet and Otsu method. Comput Eng 10:067

    Google Scholar 

  26. Chu CH, Yang DN, Chen MS (2007) Image stabilization for 2D barcode in handheld devices. In: International conference on multimedia, Augsburg, Germany, Sept 2007, pp 697–706

    Google Scholar 

  27. Xu W, Mccloskey S (2011) 2D Barcode localization and motion deblurring using a flutter shutter camera. In: IEEE workshop on applications of computer vision, Washington, DC, Jan 2011, pp 159–165

    Google Scholar 

  28. Ha JE (2011) A new method for detecting data matrix under similarity transform for machine vision applications. Int J Control Autom Syst 9(4):737–741

    Article  Google Scholar 

  29. Leong LK, Wang Y (2009) Extraction of 2D barcode using keypoint selection and line detection. In: Advances in multimedia information processing-PCM 2009, Springer, Berlin, pp 826–835

    Google Scholar 

  30. Belussi LFF, Hirata NST (2013) Fast component-based QR code detection in arbitrarily acquired images. J Math Imaging Vis 45(3):277–292

    Article  MathSciNet  Google Scholar 

  31. Joseph E, Pavlidis T (1991) Waveform recognition with application to barcodes. In: IEEE international conference on systems, man, and cybernetics, Anchorage, Alaska, Oct 1991, pp 129–134

    Google Scholar 

  32. Hu H, Xu W, Huang Q (2009) A 2D barcode extraction method based on texture direction analysis. In: International conference on image and graphics, Xi’an, China, Sept 2009, pp 759–762

    Google Scholar 

  33. Gonzalez RC, Woods RE, Masters BR (2010) Digital image processing, 3rd edn. Prentice Hall, New Jersey

    Google Scholar 

  34. Melkman AA (1987) On-line construction of the convex hull of a simple polyline. Inf Process Lett 25(1):11–12

    Article  MathSciNet  Google Scholar 

  35. Jung CR, Schramm R (2004) Rectangle detection based on a windowed Hough transform. In: 17th Brazilian symposium on computer graphics and image processing, Curitiba, Brazil, Oct 2004, pp 113–120

    Google Scholar 

  36. Qian K, Yu XL, Yu YS et al (2015) Design for two-dimensional barcode dynamic recognition system in the environment of large-scale logistics. In: IEEE advanced information technology, electronic and automation control conference, Chongqing, China, Dec 2015, vol 12, pp 878–882

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolei Yu .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Science Press, Beijing and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, X., Wang, D., Zhao, Z. (2019). Application of Semi-physical Verification Technology in Other Areas of IOT. In: Semi-physical Verification Technology for Dynamic Performance of Internet of Things System. Springer, Singapore. https://doi.org/10.1007/978-981-13-1759-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1759-0_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1758-3

  • Online ISBN: 978-981-13-1759-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics