Skip to main content

Optimal Distribution and Semi-physical Verification of RFID Multi-tag Performance Based on Image Processing

  • Chapter
  • First Online:
Semi-physical Verification Technology for Dynamic Performance of Internet of Things System
  • 344 Accesses

Abstract

In the previous chapter, three kinds of neural networks were used to optimize the distribution of RFID tags, and semi-physical experiments were carried out. In this chapter, we use the method of image processing to collect the data of 2D and 3D tags respectively, and improve the overall dynamic recognition performance of RFID multi-tag system by arranging the position of tags. Firstly, an application system for RFID multi-tag distribution optimization and semi-physical verification including image acquisition system is designed. Then, the image feature extraction and localization algorithm is used to obtain the position of each tag node, and the three-dimensional topology of tags is made.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang Y, Wang G, Yang Y (2014) Parameters optimization of polygonal fuzzy neural networks based on GA-BP hybrid algorithm. Int J Mach Learn Cybernet 5(5):815–822

    Article  Google Scholar 

  2. Du WB, Gao Y, Liu C et al (2015) Adequate is better: particle swarm optimization with limited-information. Appl Math Comput 268:832–838

    MathSciNet  Google Scholar 

  3. Dheeba J, Singh NA, Selvi ST (2014) Computer-aided detection of breast cancer on mammograms: a swarm intelligence optimized wavelet neural network approach. J Biomed Inform 49:45–52

    Article  Google Scholar 

  4. Ghamisi P, Benediktsson JA (2015) Feature selection based on hybridization of genetic algorithm and particle swarm optimization. IEEE Geosci Remote Sens Lett 12(2):309–313

    Article  Google Scholar 

  5. Trelea IC (2003) The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf Proc Lett 85(6):317–325

    Article  MathSciNet  Google Scholar 

  6. Sharafi M, Elmekkawy TY (2014) Multi-objective optimal design of hybrid renewable energy systems using PSO-simulation based approach. Renew Energy 68:67–79

    Article  Google Scholar 

  7. Shen YX, Wang GY (2016) New particle swarm optimization model and its application. Science Press, Beijing

    Google Scholar 

  8. Melin P, Olivas F, Castillo O et al (2013) Optimal design of fuzzy classification systems using PSO with dynamic parameter adaptation through fuzzy logic. Expert Syst Appl 40(8):3196–3206

    Article  Google Scholar 

  9. Ratnaweera A, Halgamuge SK, Watson HC (2004) Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans Evol Comput 8(3):240–255

    Article  Google Scholar 

  10. Torkkola K (2003) Feature extraction by non parametric mutual information maximization. J Mach Learn Res 3(3):1415–1438

    MathSciNet  MATH  Google Scholar 

  11. Vapnik VN (2013) The nature of statistical learning theory. Springer Science & Business Media, New York

    MATH  Google Scholar 

  12. Vapnik VN (1999) An overview of statistical learning theory. IEEE Trans Neural Networks 10(5):988–999

    Article  Google Scholar 

  13. EPCglobal (2006) Dynamic test: door portal test methodology

    Google Scholar 

  14. Plaza A, Martinez P, Perez R et al (2002) Spatial/spectral end member extraction by multidimensional morphological operations. IEEE Trans Geosci Remote Sens 40(9):2025–2041

    Article  Google Scholar 

  15. Zhang H, Xiao Y, Chen M et al (2009) Study on synchronization of space docking mechanism’s docking lock. J Astronaut 30(1):300–313

    Google Scholar 

  16. Torbert S (2016) Applied computer science, 2nd edn. Springer, Berlin, pp 146–148

    Google Scholar 

  17. Krajník T, Nitsche M, Faigl J et al (2014) A practical multirobot localization system. J Intell Rob Syst 76(3):539–562

    Article  Google Scholar 

  18. Lu Y, Huang J, Zheng P (2015) A CFD–DEM study of bubble dynamics in fluidized bed using flood fill method. Chem Eng J 274:123–131

    Article  Google Scholar 

  19. Franke R (1982) Scattered data interpolation: tests of some methods. Math Comput Model 38(157):181–200

    MathSciNet  MATH  Google Scholar 

  20. Lee Y, Hara T, Fujita H et al (2001) Automated detection of pulmonary nodules in helical CT images based on an improved template-matching technique. IEEE Trans Med Imaging 20(7):595–604

    Article  Google Scholar 

  21. Filippi AM, Archibald R, Bhaduri BL et al (2009) Hyperspectral agricultural mapping using support vector machine-based end member extraction (SVM-BEE). Opt Express 17(26):23823–23842

    Article  Google Scholar 

  22. Jain AK, Duin RPW, Mao J (2000) Statistical pattern recognition: a review. IEEE Trans Pattern Anal Mach Intell 22(1):4–37

    Article  Google Scholar 

  23. Mizuno K, Aizawa M, Saito S et al (2006) Analysis of feeding behavior with direct linear transformation. Early Human Dev 82(3):199–204

    Article  Google Scholar 

  24. Zhang X (2003) Improved edge detection algorithm based on canny operator. Comput Eng Appl 36(14):187–189

    Google Scholar 

  25. Cheng JJ, Cheng JL, Zhou MC et al (2015) Routing in internet of vehicles: a review. IEEE Trans Intell Transp Syst 16(5):2339–2352

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolei Yu .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Science Press, Beijing and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, X., Wang, D., Zhao, Z. (2019). Optimal Distribution and Semi-physical Verification of RFID Multi-tag Performance Based on Image Processing. In: Semi-physical Verification Technology for Dynamic Performance of Internet of Things System. Springer, Singapore. https://doi.org/10.1007/978-981-13-1759-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1759-0_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1758-3

  • Online ISBN: 978-981-13-1759-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics