Skip to main content

Influence of Temperature on the Dynamic Reading Performance of UHF RFID System: Thermodynamic Analysis and Semi-physical Verification

  • Chapter
  • First Online:
Semi-physical Verification Technology for Dynamic Performance of Internet of Things System
  • 342 Accesses

Abstract

The main interference factors affecting the communication channel are electromagnetic waves, metals, liquids, temperature and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yu YS, Yu XL, Zhao ZM et al (2017) Influence of temperature on the dynamic reading performance of UHF RFID system: theory and experimentation. J Test Eval 45(5):1577–1586

    Article  MathSciNet  Google Scholar 

  2. Yu YS, Yu XL, Zhao ZM et al (2016) Online measurement of alcohol concentration based on radio frequency identification. J Test Eval 44(6):2077–2084

    Article  MathSciNet  Google Scholar 

  3. Voytovich NI, Ershov AV, Bukharin VA et al (2011) Temperature effect on cavity antenna parameters. In: URSI general assembly and scientific symposium, Istanbul, Turkey, Aug 2011, pp 1–4

    Google Scholar 

  4. Yadav RK, Kishor J, Yadava RL (2013) Effects of temperature variations on microstrip antenna. J Netw Commun 3(1):21–24

    Google Scholar 

  5. Cheng H, Ebadi S, Gong X (2012) A low-profile wireless passive temperature sensor using resonator/antenna integration up to 1000 degrees. IEEE Antennas Wirel Propag Lett 11:369–372

    Article  Google Scholar 

  6. Li S, Li N, Calis G et al (2011) Impact of ambient temperature, tag/antenna orientation and distance on the performance of radio frequency identification in construction industry. Comput Civil Eng 5:85–93

    Google Scholar 

  7. Merilampi SL, Virkki J, Ukkonen L et al (2014) Testing the effects of temperature and humidity on printed passive UHF RFID tags on paper substrate. Int J Electron 101(5):711–730

    Article  Google Scholar 

  8. Goodrum PM, Mclaren MA, Durfee A (2006) The application of active radio frequency identification technology for tool tracking on construction job sites. Autom Constr 15(3):292–302

    Article  Google Scholar 

  9. Hahn DW, Ozisik MN (2012) Heat conduction, 3rd edn. Wiley, New York

    Book  Google Scholar 

  10. Huleihil M, Andresen B (2006) Convective heat transfer law for an endoreversible engine. J Appl Phys 100(1):14911

    Article  Google Scholar 

  11. Sheikholeslami M, Ganji DD, Javed MY et al (2015) Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model. J Magn Mater 374:36–43

    Article  Google Scholar 

  12. Nikitin PV, Rao KVS (2006) Theory and measurement of backscattering from RFID tags. IEEE Antennas Propag Mag 48(6):212–218

    Article  Google Scholar 

  13. Yu XL, Yu YS, Wang DH et al (2016) A novel temperature control system of measuring the dynamic UHF RFID reading performance. In: Sixth international conference on instrumentation & measurement, computer, communication and control, Harbin, July, 2016, pp 322–326

    Google Scholar 

  14. Sha A, Zhang C, Zhou H (2012) The temperature measuring and evaluating methods based on infrared thermal image for asphalt-pavement construction. J Test Eval 40(7):1–7

    Article  Google Scholar 

  15. Momma T, Matsunaga M, Mukoyama D et al (2012) Ac impedance analysis of lithium ion battery under temperature control. J Power Sources 216:304–307

    Article  Google Scholar 

  16. Zhang R, Xue A, Gao F (2014) Temperature control of industrial coke furnace using novel state space model predictive control. IEEE Trans Industr Inf 10(4):2084–2092

    Article  Google Scholar 

  17. Viswanathan H, Krishnamoorthy R (2001) A frequency offset estimation technique for frequency-selective fading channels. IEEE Commun Lett 5(4):166–168

    Article  Google Scholar 

  18. Kasai T, Oda M, Suzuki T (1999) Results of the ETS-7 mission—rendezvous docking and space robotics experiments. In: Fifth international symposium on artificial intelligence, robotics and automation in space, Noordwijk, Netherlands, June 1999, pp 299–306

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolei Yu .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Science Press, Beijing and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, X., Wang, D., Zhao, Z. (2019). Influence of Temperature on the Dynamic Reading Performance of UHF RFID System: Thermodynamic Analysis and Semi-physical Verification. In: Semi-physical Verification Technology for Dynamic Performance of Internet of Things System. Springer, Singapore. https://doi.org/10.1007/978-981-13-1759-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1759-0_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1758-3

  • Online ISBN: 978-981-13-1759-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics