Skip to main content

Research Progress of Semi-physical Verification Technology Based on Photoelectric Sensing

  • Chapter
  • First Online:

Abstract

Simulation verification technology is a kind of professional technology which integrates information processing, similarity theory and system integration. It uses computers and all kinds of physical equipments as bridge, mathematical model and physical model as means to make modeling and simulation of the system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sun B, Zeng FM, Zhang WD et al (2013) Development of frequency and power control system hardware-in-loop simulation platform for ship power plant. Springer, Berlin

    Google Scholar 

  2. Choi C, Lee W (2012) Analysis and compensation of time delay effects in hardware-in-the-loop simulation for automotive PMSM drive system. IEEE Trans Industr Electron 59(9):3403–3410

    Article  Google Scholar 

  3. Yang Y (2009) Russian submarine-launched strategic ballistic missile development and prospects. Missiles Space Transp Technol 2:57–61

    Google Scholar 

  4. Xia W (2010) Russian ballistic missile development status and future forecast. Aerosp Manuf Technol (6):12–14

    Google Scholar 

  5. Steurer M, Edrington CS, Sloderbeck M et al (2010) A megawatt-scale power hardware-in-the-loop simulation setup for motor drives. IEEE Trans Industr Electron 57(4):1254–1260

    Article  Google Scholar 

  6. Lu B, Wu X, Figueroa H et al (2007) A low-cost real-time hardware-in-the-loop testing approach of power electronics controls. IEEE Trans Industr Electron 54(2):919–931

    Article  Google Scholar 

  7. Li YZ, Zhu SJ, Li YH et al (2016) Temperature prediction and thermal boundary simulation using hardware-in-loop method for permanent magnet synchronous motors. IEEE/ASME Trans Mechatron 21(1):276–287

    Google Scholar 

  8. Wang S, Liu Y, Liu Z et al (2009) Hardware-in-the-loop simulation technology for size of laser facular of laser guided weapon. Opto-Electron Eng 9:004

    Google Scholar 

  9. Gu F, Zhao Y, Feng Y et al (2004) Key technologies in image guided hardware-in-the-loop simulation system. J Lunarling Soc Guidance 24(4):296–299

    Google Scholar 

  10. Shan J, Liu Z, Li Z et al (2002) Semi-physical simulation test system for laser guided weapon. Comput Simul 19(2):15–17

    Google Scholar 

  11. Yu H, Lei J (2006) Image generation technology in semi-physical simulation of visible imaging guidance. Mod Defense Technol 34(6):107–110

    Google Scholar 

  12. Deng F, Liu Z, Wang S (2004) Design and development of semi-physical simulation system for laser seeker. J Syst Simul 16(2):255–257

    Google Scholar 

  13. Zong Z, Xu R, Shi L et al (2009) Research on the key technology of semi-physical simulation of millimeter wave/infrared composite guidance. Aerosp Control 27(6):71–74

    Google Scholar 

  14. Zhang H, Xiao Y, Chen M et al (2009) Study on synchronization of space docking mechanism’s docking lock. J Astronaut 30(1):300–313

    Google Scholar 

  15. Boge T, Ma O (2011) Using advanced industrial robotics for spacecraft rendezvous and docking simulation. In: 2011 IEEE international conference on robotics and automation (ICRA), pp 1–4

    Google Scholar 

  16. Grimber D, Marchal P (1987) Dynamic testing of a docking system. In: First European in-orbit operations technology symposium, Darmstadt, DE, Sep, pp 281–288

    Google Scholar 

  17. Elfving A, Fehse W (1986) Simulation tools for the development of an autonomous rendezvous and docking system. Esa J 11(2):197–214

    Google Scholar 

  18. Kasai T, Oda M, Suzuki T (1999) Results of the ETS-7 mission—rendezvous docking and space robotics experiments. In: Fifth international symposium on artificial intelligence, robotics and automation in space, Noordwijk, Netherlands, June 1999, pp 299–306

    Google Scholar 

  19. Yanagisawa H, Ohkami Y, Matunaga S et al (1995) Design of the docking simulator and its fundamental experiment. In: Strengthening cooperation in the 21st century, Marina Del Rey, CA, Dec 1995, pp 61–64

    Google Scholar 

  20. Yang D, Guan Y (2001) Dynamic modeling of spacecraft docking process. J Nanjing Univ Sci Technol 1:001

    Google Scholar 

  21. Schwartz JL, Peck MA, Hall CD (2003) Historical review of air-bearing spacecraft simulators. J Guidance Control Dyn 26(4):513–522

    Article  Google Scholar 

  22. Ma XJ, Cao XB, Ma XR (2002) Reliability analysis and design of on-board computer system for small stereo mapping satellite. J Harbin Inst Technol (New series) 9(1)

    Google Scholar 

  23. Feng ZSCXW (2005) Design of semi-physical system for micro-satellite attitude control. Chin Space Sci Technol 6:008

    Google Scholar 

  24. Su K, Li J, Fu H (2011) Smart city and the applications. In: International conference on electronics, communications and control, Ningbo, China, Sept 2011, pp 1028–1031

    Google Scholar 

  25. Aisopou A, Stoianov I, Graham NJ (2012) In-pipe water quality monitoring in water supply systems under steady and unsteady state flow conditions: a quantitative assessment. Water Res 46(1):235–246

    Article  Google Scholar 

  26. Dutta S, Sarma D, Nath P (2015) Ground and river water quality monitoring using a smartphone-based pH sensor. AIP Adv 5(5):057151

    Article  Google Scholar 

  27. Mokhtar B, Azab M, Shehata N et al (2016) System-aware smart network management for nano-enriched water quality monitoring. J Sens 2016(2):1–13

    Article  Google Scholar 

  28. Fen YW, Yunus WMM (2013) Utilization of chitosan-based sensor thin films for the detection of lead ion by surface plasmon resonance optical sensor. IEEE Sens J 13(5):1413–1418

    Article  Google Scholar 

  29. Langergraber G, Fleischmann N, Hofstaedter F et al (2004) Monitoring of a paper mill wastewater treatment plant using UV/VIS spectroscopy. Water Sci Technol 49(1):9–14

    Article  Google Scholar 

  30. Boulos L, Prevost M, Barbeau B et al (1999) LIVE/DEAD® BacLight™: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. J Microbiol Methods 37(1):77–86

    Article  Google Scholar 

  31. Yu L, Li X, Jian Z et al (2010) Research on the innovation of strategic business model in green agricultural products based on internet of things (IOT). In: International conference on e-business and information system security, Wuhan, China, May 2010, pp 636–638

    Google Scholar 

  32. Yang SH, Jung EM, Han SK (2013) Indoor location estimation based on led visible light communication using multiple optical receivers. IEEE Commun Lett 17(9):1834–1837

    Article  Google Scholar 

  33. Takami K, Furukawa T, Kumon M et al (2016) Estimation of a nonvisible field-of-view mobile target incorporating optical and acoustic sensors. Auton Robots 40(2):343–359

    Article  Google Scholar 

  34. Zhang W, Chowdhury MIS, Kavehrad M (2014) Asynchronous indoor positioning system based on visible light communications. Opt Eng 53(4):045105

    Article  Google Scholar 

  35. Yang SH, Jeong EM, Kim DR et al (2013) Indoor three-dimensional location estimation based on LED visible light communication. Electron Lett 49(1):54–56

    Article  Google Scholar 

  36. Kaemarungsi K, Krishnamurthy P (2012) Analysis of WLAN’s received signal strength indication for indoor location fingerprinting. Pervasive Mobile Comput 8(2):292–316

    Article  Google Scholar 

  37. Gungor VC, Sahin D, Kocak T et al (2013) A survey on smart grid potential applications and communication requirements. IEEE Trans Industr Inf 9(1):28–42

    Article  Google Scholar 

  38. Zaker N, Kantarci B, Erol-Kantarci M et al (2013) Quality-of-service-aware fiber wireless sensor network gateway design for the smart grid. In: IEEE international conference on communications workshops, Budapest, Hungary, June 2013, pp 863–867

    Google Scholar 

  39. Luo R, Hua N, Liu Z et al (2016) Latency constrained dynamic routing in optical transport networks for smart grid. In: Advanced photonics congress, Vancouver, Canada, July 2016, JTu4A.42

    Google Scholar 

  40. Wang J, Guo Z, Zhang G et al (2012) Experimental investigation on optical current transducer’s long-term operation stability. Power Syst Technol 6:009

    Google Scholar 

  41. Nilsson RC, Oberschlake TA (1993) Optical fiber/metallic conductor composite cable. U.S. Patent 5,268,971. 1993-12-7

    Google Scholar 

  42. Kempf DJ (1987) Real time simulation for application to ABS development. SAE paper, 1987: 870336

    Google Scholar 

  43. Bigliani U, Piccolo R, Vipiana C (1990) On Road test vs bench simulation test: a way to reduce development time and increase product reliability. SAE technical paper series, Warrendale, PA, 1990: 905207

    Google Scholar 

  44. Powell BK, Sureshbabu N, Bailey KE et al (1998) Hardware-in-the-loop vehicle and powertrain analysis and control design issues. In: 1998 American control conference, Philadelphia, PA, June 1998, pp 483–492

    Google Scholar 

  45. Raman S, Sivashankar N, Milam W et al (1999) Design and implementation of HIL simulators for powertrain control system software development. In: 1999 American control conference, San Diego, CA, June 1999, pp 709–713

    Google Scholar 

  46. Isermann R, Schaffnit J, Sinsel S (1999) Hardware-in-the-loop simulation for the design and testing of engine-control systems. Control Eng Pract 7(5):643–653

    Article  Google Scholar 

  47. Isermann R, Müller N (2003) Design of computer controlled combustion engines. Mechatronics 13(10):1067–1089

    Article  Google Scholar 

  48. Dongxu WYLXW (1999) Calculation and analysis of the diesel engine with bypass and complementary combustion and sequential turbocharging. J Harbin Eng Univ 1

    Google Scholar 

  49. Tan W, Tang H, Liang F et al (2004) Hardware In-Loop Simulation (HILS) design for common rail oil system of diesel engine. J Shanghai Jiaotong Univ 10:011

    Google Scholar 

  50. Francis RC, McGee JP, Sainati RA et al (2003) Object tracking and management system and method using radio-frequency identification tags. U.S. Patent 6,600,418. 2003-7-29

    Google Scholar 

  51. Kneeland FC (1996) Combination cable capable of simultaneous transmission of electrical signals in the radio and microwave frequency range and optical communication signals. U.S. Patent 5,574,815. 1996-11-12

    Google Scholar 

  52. Xl Y (2015) Key technologies of anti-collision and dynamic testing of RFID in typical IOT: theory and practice. Science Press, Beijing

    Google Scholar 

  53. Yu YS, Yu XL, Zhao ZM, Wang DH (2015) A method for optimal allocation of RFID tags based on matrix analysis: China. ZL201310175258.0. 2015-09-16

    Google Scholar 

  54. Yu YS, Yu XL, Zhao ZM, Wang DH, Liu JL (2016) Method for dynamic mapping of RFID tag orientation based on reading distance measurement in gate environment: China. ZL201410160411.7. 2016-07-06

    Google Scholar 

  55. Yu XL, Yu YS, Liu JL, Qian K, Wang DH (2015) A temperature control system for testing the dynamic performance of RFID tags: China. ZL201520410696.5. 2015-11-25

    Google Scholar 

  56. Yu XL, Wang DH, Yu YS, Ji YY (2015) An automatic measurement method for RFID reading range used in logistics conveyor line: China. ZL201210312559.9. 2015-03-25

    Google Scholar 

  57. Yu XL, Wang DH, Yu YS, Ji YY (2013) An automatic RFID reading range measuring system for logistic conveyor line: China. ZL201220434345.4. 2013-03-27

    Google Scholar 

  58. Yu XL, Wang DH, Yu YS, Zhao ZM (2013) A RFID multi-label anti-collision read range measuring system for gate entry environment: China. ZL201320196269.2. 2013-10-30

    Google Scholar 

  59. Zhang L, Lu H, Wu Z et al (2015) Bit error rate analysis of chaotic cognitive radio system over slow fading channels. Ann Telecommun 70(11–12):513–521

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolei Yu .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Science Press, Beijing and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, X., Wang, D., Zhao, Z. (2019). Research Progress of Semi-physical Verification Technology Based on Photoelectric Sensing. In: Semi-physical Verification Technology for Dynamic Performance of Internet of Things System. Springer, Singapore. https://doi.org/10.1007/978-981-13-1759-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1759-0_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1758-3

  • Online ISBN: 978-981-13-1759-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics