Protein Sequence in Classifying Dengue Serotypes

  • Pandiselvam PandiyarajanEmail author
  • Kathirvalavakumar Thangairulappan
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 713)


Dengue is the growing disease. It serves, especially in children. Different diagnosing methods like ELISA, Platelia, haemaocytometer, RT-PCR, decision tree algorithms and recommender system with fuzzy logic are used to diagnose the dengue by blood specimen. But these methods identify severe cases after five to ten days of the person infected by dengue. Some other methods require saliva and urine samples instead of blood specimen when a volume of blood samples cannot be obtained from person, especially from children. But from this sample, the correct result could not be identified. To overcome these problems, this paper proposes dengue diagnosis method based on amino acids or components in the protein sequence as it needs only skin cells or hair or nail which can be collected easily from the patients. The proposed method not only diagnoses the dengue but also identifies serotypes using statistical analysis of protein sequence. The experimental results prove that the proposed method identifies dengue and its serotypes correctly by amino acids and components of protein sequences. The proposed method is capable of finding deficiency or dominance of amino acids or components in the dengue-infected protein sequence by assessing entropy, relative and weighted average values of amino acids or components.


Dengue serotypes Protein sequence Diagnosing methods Protein classification 


  1. 1.
  2. 2.
    Guzman, M.G., Jaenisch, T., Gaczkouski, R., Ty Hang, V.T., Sekara, S.D., Kroeger, A., Nazquez, S., Ruiz, D., Martinez, E., Masrcado, J.C., Balmaseda, A., Harris, E., Dimano, E., Leano, P.-S.A., Villegas, E., Benduzu, H., Villalobos, I., Farrar, J., Simmon, C.D.: Multi-country evaluation of the sensitivity and specificity of two commercially available NS1 ELISA assays for dengue diagnosis. PLoS. Negl. Trop. Dis. 8 (2010) Google Scholar
  3. 3.
    Tanner, L., Schreiber, M., Low, J.-G.H., Ong, A., Tolfvenstam, T., Lai, Y.L., Ching Ng, L., Leo, Y.S., Puong, L.T., Vasudevan, S.G., Simmons, C.P., Hibberd, M.L., Eong, E.: Decision tree algorithms predict the diagnosis and outcome of dengue fever in the early phase of illness. PLoS. Negl. Trop. Dis. 3 (2008)Google Scholar
  4. 4.
    Fried, R.J., Gibbons, V.R., Kalyanarooj, S., Thomas, S.J., Srikialkhachorn, A., In-kyu, Y., Jarman, G.R., Green, S., Rothman, L.A., Cummings, A.-T.D.: Serotype-specific differences in the risk of dengue hemorrhagic fever: an analysis of data collected in Bangkok, Thailand from 1994 to 2006. PLoS. Negl. Trop. Dis. 3 (2010)Google Scholar
  5. 5.
    Singh, S., Singh, A., Samson, Singh, M.: Recommender system for detection of dengue using fuzzy logic. J. Comput. Eng. Technol. 7, 44–52 (2016)Google Scholar
  6. 6.
    Andries, A.C., Duong, V., Ly, S., Cappelle, J., Kim, K.S., Lorn Try, P., Ros, S., Ong, S., Huy, R., Horwood, P., Flamand, M., Sakuntaabhai, A., Tarantola, A., Buchy, P.: Value of routine dengue diagnostic tests in urine and saliva specimens. PLoS. Negl. Trop. Dis. 9 (2015)CrossRefGoogle Scholar
  7. 7.
    Grande, A.J., Reid, H., Thomas, E., Foster, C., Darton, T.C.: Tourniquet test for dengue diagnosis: systematic review and Meta-analysis of diagnostic test accuracy. PLoS. Negl. Trop. Dis. 8 (2015)Google Scholar
  8. 8.
    Vongsouvath, M., Phommasone, K., Sengvilaipaseuth, O., Kosoltanapiwat, N., Chantratita, N., Blacksell, S.D., Leesue, J., Lamballerie, X.D., Mayxay, M., Keomany, S., Newton, P.N., Dubotperes, A.: Using rapid diagnostic tests as a source of viral RNA for dengue serotype by RT-PCR—a novel epidemiological tool. PLoS Negl. Trop. Dis. 5 (2016)Google Scholar
  9. 9.
    Parkash, O., Shueb, R.H.: Diagnosis of dengue infection using conventional and biosensor based techniques. Viruses 7, 5410–5427 (2016)CrossRefGoogle Scholar
  10. 10.
    Fathima, S.A., Manimegalai, D., Hundewale, N.: A review of data mining classification techniques applied for diagnosis and prognosis of the arbovirus—dengue. Int. J. Comput. Sci. 6, 322–328 (2011)Google Scholar
  11. 11.
    Tarle, B., Tajanpure, R., Jena, S.: Medical data classification using different optimization techniques: a survey. Int. J. Res. Eng. Tech. 5, 101–108 (2016)Google Scholar
  12. 12.
    Mishra, S., Mohanty, P.S., Hota, R., Badajena, J.C.: Rough set approach for generation of classification rules for dengue. Int. J. Comput. Appl. 11, 31–35 (2015)Google Scholar
  13. 13.
    Arunkumar, P.M., Chitradevi, B., Karthick, P., Ganesan, M., Madhan, A.S.: Dengue disease prediction using decision tree and support vector machine. SSRG Int. J. Comput. Eng. 1, 60–63 (2017)Google Scholar
  14. 14.
    Pabbi, V.: Fuzzy expert system for medical diagnosis. Int. J. Sci. Res. 5, 1–7 (2017)Google Scholar
  15. 15.
    Fatima, M., Pasha, M.: Survey of machine learning algorithms for disease diagnostic. J. Intell. Learn. Syst. Appl. 9, 1–16 (2017)Google Scholar
  16. 16.
    Shaukat, K., Masood, N., Shafaat, B.A., Jabbar, K., Shabbir, H., Shabbir, S.: Dengue fever in perspective of clustering algorithms. Data Min. Genomics Proteomics 6 (2015)Google Scholar
  17. 17.
    Saha, P., Mandal, R.: Detection of dengue disease using artificial neural networks. Int. J. Comput. Eng. 5, 65–68 (2017)Google Scholar
  18. 18.
    Roziqin, C.M., Basuki, A., Harsono, T.: Parameters data distribution analysis for dengue fever breaks in Jember using Monte Carlo. Int. J. Comput. Sci. Softw. Eng. 5, 45–48 (2016)Google Scholar
  19. 19.
    Subitha, N., Padmapriya, A.: Diagnosis for dengue fever using spatial data mining. Int. J. Comput. Trends. Techol. 4, 2646–2651 (2013)Google Scholar
  20. 20.
    National Center for Biotechnology Information.

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Pandiselvam Pandiyarajan
    • 1
    Email author
  • Kathirvalavakumar Thangairulappan
    • 2
  1. 1.Department of Computer ScienceAyya Nadar Janaki Ammal CollegeSivakasiIndia
  2. 2.Research Centre in Computer ScienceV.H.N. Senthikumara Nadar CollegeVirudhunagarIndia

Personalised recommendations