Advertisement

A Spoofing Security Approach for Facial Biometric Data Authentication in Unconstraint Environment

  • Naresh KumarEmail author
  • Aditi Sharma
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 713)

Abstract

Security is ever a challenging issue of research at national and international level due to the privacy standards of object detection and recognition in unconstraint environment. Almost real-life activities are performed under the unconstraint conditions in which exact determination of any activity fails due to the lack of complete information of facial parts, hands and relevant objects. However, from social interaction views, face detection is a quite saturated research in normal conditions but, due to highly sensitive and easy availability of facial data, encourages the researchers to work by cryptographic aspects in unconstraint environment. In this work, we focus on securities issues for automated facial biometric data authentication by local features extraction. By keeping space and time intricacy, we ensure the fusion of Gabor, center-symmetric LBP and discriminative robust LBP features to improve the performance. The feature matching is performed by majority of vote in which difference of Gaussian and robust local ternary pattern is used. Since we choose one sample to match with stored faces, the reduction in space complexity improves the performance up to 89% of matching accuracy.

Keywords

Automated face recognition (AFR) Local binary pattern (LBP) Center-symmetric local binary pattern (CS-LBP) Robust local ternary pattern (RLTP) Discriminative rotational local binary pattern (DR-LBP) 

References

  1. 1.
    Phillips, P.J., Grother, P., Micheals, R.J., Blackburn, D.M., Tabassi, E., Bone, M., Face, R.V.T.: Evaluation report. Facial Recognition. Vendor Test 2002, (2003)Google Scholar
  2. 2.
    Jain, A.K., Ross, A., Pankanti, S.: Biometrics: a tool for information security. IEEE Trans. Inf. Forensics Secur. 1(2), 125–143 (2006)CrossRefGoogle Scholar
  3. 3.
    Jain, A.K., Ross, A., Prabhakar, S.: An introduction to biometric recognition. IEEE Trans. Circuits Syst. Video Technol. 14(1), 4–20 (2004)CrossRefGoogle Scholar
  4. 4.
    Ross, A., Othman, A.: Visual cryptography for biometric privacy. IEEE Trans. Inf. Forensics Secur. 6(1), 70–81 (2011)CrossRefGoogle Scholar
  5. 5.
    Grother, P.J., Quinn, G.W., Phillips, P.J.: Report on the evaluation of 2D still-image face recognition algorithms. NIST interagency report, 7709, 106, (2010)Google Scholar
  6. 6.
    Wayman, J., Jain, A., Maltoni, D., Maio, D.: An Introduction to Biometric Authentication Systems, pp. 1–20. Springer, London (2005)Google Scholar
  7. 7.
    Kirby, M., Sirovich, L.: Application of the Karhunen-Loeve procedure for the characterization of human faces. IEEE Trans. Pattern Anal. Mach. Intell. 12(1), 103–108 (1990)CrossRefGoogle Scholar
  8. 8.
    Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)CrossRefGoogle Scholar
  9. 9.
    Li, D., Zhou, H., Lam, K.M.: High-resolution face verification using pore-scale facial features. IEEE Trans. Image Process. 24(8), 2317–2327 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hao, F., Anderson, R., Daugman, J.: Combining crypto with biometrics effectively. IEEE Trans. Comput. 55(9), 1081–1088 (2006)CrossRefGoogle Scholar
  11. 11.
    Lenc, L., Král, P.: Automatic face recognition system based on the SIFT features. Comput. Electr. Eng. 46, 256–272 (2015)CrossRefGoogle Scholar
  12. 12.
    Sun, Y., Zhang, M., Sun, Z., Tan, T.: Demographic analysis from biometric data: achievements, challenges, and new frontiers. IEEE Trans. Pattern Anal. Mach. Intell. (2017)Google Scholar
  13. 13.
    Cole, F., Belanger, D., Krishnan, D., Sarna, A., Mosseri, I., Freeman, W.T.: Face Synthesis from Facial Identity Features (2017). arXiv:1701.04851
  14. 14.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)CrossRefGoogle Scholar
  15. 15.
    Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)CrossRefGoogle Scholar
  16. 16.
    Faraji, M.R., Qi, X.: Face recognition under illumination variations based on eight local directional patterns. IET Biom. 4(1), 10–17 (2015)CrossRefGoogle Scholar
  17. 17.
    Andries, M., Simonin, O., Charpillet, F.: Localization of humans, objects, and robots interacting on load-sensing floors. IEEE Sens. J. 16(4), 1026–1037 (2016)CrossRefGoogle Scholar
  18. 18.
    Kepenekci, B.: Face recognition using Gabor wavelet transform. Doctoral dissertation, Middle East Technical University (2001)Google Scholar
  19. 19.
    Lu, J., Tan, Y.P., Wang, G.: Discriminative multimanifold analysis for face recognition from a single training sample per person. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 39–51 (2013)CrossRefGoogle Scholar
  20. 20.
    Dutta, A., Günther, M., El Shafey, L., Marcel, S., Veldhuis, R., Spreeuwers, L.: Impact of eye detection error on face recognition performance. IET Biom. 4(3), 137–150 (2015)CrossRefGoogle Scholar
  21. 21.
    Adini, Y., Moses, Y., Ullman, S.: Face recognition: the problem of compensating for changes in illumination direction. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 721–732 (1997)CrossRefGoogle Scholar
  22. 22.
    Kanade, T.: Picture processing system by computer complex and recognition of human faces. Doctoral dissertation, Kyoto University, 3952, pp. 83–97 (1973)Google Scholar
  23. 23.
    Deng, W., Liu, Y., Hu, J., Guo, J.: The small sample size problem of ICA: a comparative study and analysis. Pattern Recogn. 45(12), 4438–4450 (2012)CrossRefGoogle Scholar
  24. 24.
    Jung, Y., Kim, D., Son, B., Kim, J.: An eye detection method robust to eyeglasses for mobile iris recognition. Expert Syst. Appl. 67, 178–188 (2017)CrossRefGoogle Scholar
  25. 25.
    Ngo, D.C., Teoh, A.B., Goh, A.: Biometric hash: high-confidence face recognition. IEEE Trans. Circuits Syst. Video Technol. 16(6), 771–775 (2006)CrossRefGoogle Scholar
  26. 26.
    Otto, C., Wang, D., Jain, A.K.: Clustering millions of faces by identity (2016). arXiv:1604.00989
  27. 27.
    Crosswhite, N., Byrne, J., Parkhi, O. M., Stauffer, C., Cao, Q., Zisserman, A.: Template adaptation for face verification and identification (2016). arXiv:1603.03958
  28. 28.
    Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern. Recogn. 29(1), 51–59 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of Technology RoorkeeRoorkeeIndia
  2. 2.Department of Computer Science & EngineeringMBM Engineering College, Jai Narain Vyas UniversityJodhpurIndia

Personalised recommendations