Skip to main content

Novel Classification Perspective of Geroprotective and Senolytic Drugs as an Antiaging Strategy

  • Chapter
  • First Online:

Abstract

Aging is an inevitable, physiologically irreversible, and progressive process. It involves various detrimental changes in the ability to maintain cellular homeostasis. During the aging period, senescent cells are accumulated. Due to the significant medical advances in the treatment of various life-threatening diseases, life expectancy is rising day by day. Thus, higher speed of population aging brings enhanced prevalence of age-related disorders. Increasing mid-life quality and extending the life span of aging individuals seem possible by decreasing the rate of aging process with the help of various pharmacologically active substances called as geroprotective or senolytic drugs. Several numbers of naturally found and synthetic substances may provide a source of therapeutic drugs which are proposed to have some geroprotective or senolytic effects, reducing the rate of aging and extending the life span. These therapeutic drugs have some beneficial effects on cellular metabolism such as antioxidant, free radical scavenger, immunomodulator, and metal chelator activities. Some of the aforementioned drugs are called as smart molecules because of their pluripotency effects. Attributed to their properties, these drugs may overcome impaired cellular metabolic homeostasis. This chapter aimed to classify geroprotective and senolytic drugs via their structural properties and pharmacological mechanisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aggarwal N, Razvi S (2013) Thyroid and aging or the aging thyroid? An evidence-based analysis of the literature. J Thyroid Res 2013:481287

    Article  Google Scholar 

  • Anisimov VN (2001) Life span extension and cancer risk: myths and reality. Exp Gerontol 36(7):1101–1136

    Article  CAS  Google Scholar 

  • Arakawa M, Ishimura A, Arai Y, Kawabe K, Suzuki S, Ishige K, Ito Y (2007) N-acetylcysteine and ebselen but not nifedipine protected cerebellar granule neurons against 4-hydroxynonenal-induced neuronal death. Neurosci Res 57(2):220–229

    Article  CAS  Google Scholar 

  • Aronson D (2003) Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes. J Hypertens 21(1):3–12

    Article  CAS  Google Scholar 

  • Aruoma OI, Halliwell B, Hoey BM, Butler J (1989) The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic Biol Med 6(6):593–597

    Article  CAS  Google Scholar 

  • Atukeren P, Aydin S, Uslu E, Gumustas M, Cakatay U (2010) Redox homeostasis of albumin in relation to alpha-lipoic acid and dihydrolipoic acid. Oxidative Med Cell Longev 3(3):206–213

    Article  Google Scholar 

  • Aune SE, Herr DJ, Mani SK, Menick DR (2014) Selective inhibition of class I but not class IIb histone deacetylases exerts cardiac protection from ischemia reperfusion. J Mol Cell Cardiol 72:138–145

    Article  CAS  Google Scholar 

  • Avantaggiato A, Palmieri A, Bertuzzi G, Carinci F (2014) Fibroblasts behavior after N-acetylcysteine and amino acids exposure: extracellular matrix gene expression. Rejuvenation Res 17(3):285–290

    Article  CAS  Google Scholar 

  • Bargi R, Asgharzadeh F, Beheshti F, Hosseini M, Farzadnia M, Khazaei M (2017) Thymoquinone protects the rat kidneys against renal fibrosis. Res Pharm Sci 12(6):479

    Article  Google Scholar 

  • Berger MM (2005) Can oxidative damage be treated nutritionally? Clin Nutr 24(2):172–183

    Article  CAS  Google Scholar 

  • Boldyrev A, Formazyuk V, Sergienko V (1994) Biological significance of histidine-containing dipeptides with special reference to carnosine: chemistry, distribution, metabolism and medical applications. Sov Sci Rev D Physicochem Biol 13:1–60

    Google Scholar 

  • Chen D, Guarente L (2007) SIR2: a potential target for calorie restriction mimetics. Trends Mol Med 13(2):64–71

    Article  CAS  Google Scholar 

  • Dalle-Donne I, Giustarini D, Colombo R, Rossi R, Milzani A (2003) Protein carbonylation in human diseases. Trends Mol Med 9(4):169–176

    Article  CAS  Google Scholar 

  • Darakhshan S, Pour AB, Colagar AH, Sisakhtnezhad S (2015) Thymoquinone and its therapeutic potentials. Pharmacol Res 95:138–158

    Article  Google Scholar 

  • Dhahbi JM, Mote PL, Fahy GM, Spindler SR (2005) Identification of potential caloric restriction mimetics by microarray profiling. Physiol Genomics 23(3):343–350

    Article  CAS  Google Scholar 

  • Diamanti-Kandarakis E, Dattilo M, Macut D, Duntas L, Gonos ES, Goulis DG, Gantenbein CK, Kapetanou M, Koukkou E, Lambrinoudaki I (2017) MECHANISMS IN ENDOCRINOLOGY: aging and anti-aging: a combo-Endocrinology overview. Eur J Endocrinol 176(6):R283–R308

    Article  CAS  Google Scholar 

  • Ehninger D, Neff F, Xie K (2014) Longevity, aging and rapamycin. Cell Mol Life Sci 71(22):4325–4346

    Article  CAS  Google Scholar 

  • Erdoğan ME, Aydın S, Yanar K, Mengi M, Kansu AD, Cebe T, Belce A, Çelikten M, Çakatay U (2017) The effects of lipoic acid on redox status in brain regions and systemic circulation in streptozotocin-induced sporadic Alzheimer’s disease model. Metab Brain Dis 32(4):1017–1031

    Article  Google Scholar 

  • Farkhondeh T, Samarghandian S, Hozeifi S, Azimi-Nezhad M (2017) Therapeutic effects of thymoquinone for the treatment of central nervous system tumors: a review. Biomed Pharmacother 96:1440–1444

    Article  CAS  Google Scholar 

  • Fass DM, Shah R, Ghosh B, Hennig K, Norton S, Zhao W-N, Reis SA, Klein PS, Mazitschek R, Maglathlin RL (2010) Effect of inhibiting histone deacetylase with short-chain carboxylic acids and their hydroxamic acid analogs on vertebrate development and neuronal chromatin. ACS Med Chem Lett 2(1):39–42

    Article  Google Scholar 

  • Ferguson BS, McKinsey TA (2015) Non-sirtuin histone deacetylases in the control of cardiac aging. J Mol Cell Cardiol 83:14–20

    Article  CAS  Google Scholar 

  • Fontana M, Pinnen F, Lucente G, Pecci L (2002) Prevention of peroxynitrite-dependent damage by carnosine and related sulphonamido pseudodipeptides. Cell Mol Life Sci 59(3):546–551

    Article  CAS  Google Scholar 

  • Fu A-L, Dong Z-H, Sun M-J (2006) Protective effect of N-acetyl-L-cysteine on amyloid β-peptide-induced learning and memory deficits in mice. Brain Res 1109(1):201–206

    Article  CAS  Google Scholar 

  • Fu A, Zhou R, Xu X (2014) The synthetic thyroid hormone, levothyroxine, protects cholinergic neurons in the hippocampus of naturally aged mice. Neural Regen Res 9(8):864

    Article  CAS  Google Scholar 

  • Fusco D, Colloca G, Monaco MRL, Cesari M (2007) Effects of antioxidant supplementation on the aging process. Clin Interv Aging 2(3):377

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guarente L (2013) Calorie restriction and sirtuins revisited. Genes Dev 27(19):2072–2085

    Article  CAS  Google Scholar 

  • Hardeland R, Cardinali DP, Brown GM, Pandi-Perumal SR (2015) Melatonin and brain inflammaging. Prog Neurobiol 127:46–63

    Article  Google Scholar 

  • Hipkiss AR (2017) On the relationship between energy metabolism, proteostasis, aging and Parkinson’s disease: possible causative role of methylglyoxal and alleviative potential of carnosine. Aging Dis 8(3):334

    Article  Google Scholar 

  • Howes RM (2006) The free radical fantasy. Ann N Y Acad Sci 1067(1):22–26

    Article  CAS  Google Scholar 

  • Idris-Khodja N, Schini-Kerth V (2012) Thymoquinone improves aging-related endothelial dysfunction in the rat mesenteric artery. Naunyn Schmiedeberg’s Arch Pharmacol 385(7):749–758

    Article  CAS  Google Scholar 

  • Ingram DK, Roth GS (2011) Glycolytic inhibition as a strategy for developing calorie restriction mimetics. Exp Gerontol 46(2):148–154

    Article  CAS  Google Scholar 

  • Ito K, Colley T, Mercado N (2012) Geroprotectors as a novel therapeutic strategy for COPD, an accelerating aging disease. Int J Chron Obstruct Pulmon Dis 7:641

    Article  CAS  Google Scholar 

  • Jonas M, Kuryłowicz A, Puzianowska-Kuźnicka M (2015) Aging and the endocrine system. Postępy Nauk Medycznych 24:166–177

    Google Scholar 

  • Karaaslan C, Suzen S (2015) Antioxidant properties of melatonin and its potential action in diseases. Curr Top Med Chem 15(9):894–903

    Article  CAS  Google Scholar 

  • Kayali R, Cakatay U, Riza Kiziler A, Aydemir B (2007) Effect of alpha-lipoic acid supplementation on trace element levels in serum and in postmitotic tissue in aged rats. Med Chem 3(3):297–300

    Article  CAS  Google Scholar 

  • Kenny AM, Prestwood KM, Gruman CA, Marcello KM, Raisz LG (2001) Effects of transdermal testosterone on bone and muscle in older men with low bioavailable testosterone levels. J Gerontol Ser A Biol Med Sci 56(5):M266–M272

    Article  CAS  Google Scholar 

  • Khader M, Eckl PM (2014) Thymoquinone: an emerging natural drug with a wide range of medical applications. Iran J Basic Med Sci 17(12):950

    PubMed  PubMed Central  Google Scholar 

  • Khavinson VK, Kuznik B, Ryzhak G (2013) Peptide bioregulators: a new class of geroprotectors. Message 1: results of experimental studies. Adv Gerontol 3(3):225–235

    Article  Google Scholar 

  • Korkmaz GG, Uzun H, Cakatay U, Aydin S (2012) Melatonin ameliorates oxidative damage in hyperglycemia-induced liver injury. Clin Invest Med 35(6):370–377

    Article  Google Scholar 

  • Kornatowski T, Bartosz G, Pawluk H, Czuczejko J, Szadujkis-Szadurski L (2006) Production of nitric oxide, lipid peroxidation and oxidase activity of ceruloplasmin in blood of elderly patients with primary hypertension. Effects of perindopril treatment. Aging Clin Exp Res 18(1):1–6

    Article  Google Scholar 

  • Lam YY, Peterson CM, Ravussin E (2013) Resveratrol vs. calorie restriction: data from rodents to humans. Exp Gerontol 48(10):1018–1024

    Article  CAS  Google Scholar 

  • Loenen WA (2010) S-adenosylmethionine: simple agent of methylation and secret to aging and metabolism? In: Epigenetics of aging. Springer, New York, pp 107–131

    Chapter  Google Scholar 

  • López-Lluch G, Navas P (2016) Calorie restriction as an intervention in ageing. J Physiol 594(8):2043–2060

    Article  Google Scholar 

  • Loscalzo J (2001) Nitric oxide insufficiency, platelet activation, and arterial thrombosis. Circ Res 88(8):756–762

    Article  CAS  Google Scholar 

  • Ma L, Dong W, Wang R, Li Y, Xu B, Zhang J, Zhao Z, Wang Y (2015) Effect of caloric restriction on the SIRT1/mTOR signaling pathways in senile mice. Brain Res Bull 116:67–72

    Article  CAS  Google Scholar 

  • Magon N, Chopra S, Kumar P (2012) Geroprotection: a promising future. J Mid-Life Health 3(2):56

    Article  Google Scholar 

  • McFarland GA, Holliday R (1994) Retardation of the senescence of cultured human diploid fibroblasts by carnosine. Exp Cell Res 212(2):167–175

    Article  CAS  Google Scholar 

  • Medvedev ZA (1990) An attempt at a rational classification of theories of ageing. Biol Rev 65(3):375–398

    Article  CAS  Google Scholar 

  • Mohar DS, Malik S (2012) The sirtuin system: the holy grail of resveratrol? J Clin Exp Cardiol 3(11):216

    Article  Google Scholar 

  • Moskalev A, Chernyagina E, Tsvetkov V, Fedintsev A, Shaposhnikov M, Krut’ko V, Zhavoronkov A, Kennedy BK (2016) Developing criteria for evaluation of geroprotectors as a key stage toward translation to the clinic. Aging Cell 15(3):407–415

    Article  CAS  Google Scholar 

  • Moskalev A, Chernyagina E, Kudryavtseva A, Shaposhnikov M (2017) Geroprotectors: a unified concept and screening approaches. Aging Dis 8(3):354

    Article  Google Scholar 

  • Muellenbach EA, Diehl CJ, Teachey MK, Lindborg KA, Archuleta TL, Harrell NB, Andersen G, Somoza V, Hasselwander O, Matuschek M (2008) Interactions of the advanced glycation end product inhibitor pyridoxamine and the antioxidant α-lipoic acid on insulin resistance in the obese Zucker rat. Metab-Clin Exp 57(10):1465–1472

    Article  CAS  Google Scholar 

  • Murphy MP (2008) Targeting lipophilic cations to mitochondria. Biochim Biophys Acta (BBA)-Bioenerg 1777(7):1028–1031

    Article  CAS  Google Scholar 

  • Negre-Salvayre A, Coatrieux C, Ingueneau C, Salvayre R (2008) Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors. Br J Pharmacol 153(1):6–20

    Article  CAS  Google Scholar 

  • Nowotny K, Jung T, Höhn A, Weber D, Grune T (2015) Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomol Ther 5(1):194–222

    CAS  Google Scholar 

  • Odin V, Belikova T, Pushkova E, Barr N (2004) Diabetes mellitus in elderly: geroprotective and antidiabetic properties of delta-sleep induced peptide. Adv Gerontol= Uspekhi Gerontologii 15:101–114

    CAS  PubMed  Google Scholar 

  • Oliver G, Dean O, Camfield D, Blair-West S, Ng C, Berk M, Sarris J (2015) N-acetyl cysteine in the treatment of obsessive compulsive and related disorders: a systematic review. Clin Psychopharm Neurosci 13(1):12

    Article  CAS  Google Scholar 

  • Onorato JM, Jenkins AJ, Thorpe SR, Baynes JW (2000) Pyridoxamine, an inhibitor of advanced glycation reactions, also inhibits advanced lipoxidation reactions mechanism of action of pyridoxamine. J Biol Chem 275(28):21177–21184

    Article  CAS  Google Scholar 

  • Packer L, Witt EH, Tritschler HJ (1995) Alpha-lipoic acid as a biological antioxidant. Free Radic Biol Med 19(2):227–250

    Article  CAS  Google Scholar 

  • Pandey KB, Rizvi SI (2014) Resveratrol in vitro ameliorates tert-butyl hydroperoxide-induced alterations in erythrocyte membranes from young and older humans. Appl Physiol Nutr Metab 39(10):1093–1097

    Article  CAS  Google Scholar 

  • Saeidnia S, Abdollahi M (2013) Toxicological and pharmacological concerns on oxidative stress and related diseases. Toxicol Appl Pharmacol 273(3):442–455

    Article  CAS  Google Scholar 

  • Samaras N, Papadopoulou M-A, Samaras D, Ongaro F (2014) Off-label use of hormones as an antiaging strategy: a review. Clin Interv Aging 9:1175

    Article  Google Scholar 

  • Schramm TK, Gislason GH, Vaag A, Rasmussen JN, Folke F, Hansen ML, Fosbøl EL, Køber L, Norgaard ML, Madsen M (2011) Mortality and cardiovascular risk associated with different insulin secretagogues compared with metformin in type 2 diabetes, with or without a previous myocardial infarction: a nationwide study. Eur Heart J 32(15):1900–1908

    Article  CAS  Google Scholar 

  • Sinclair DA (2005) Toward a unified theory of caloric restriction and longevity regulation. Mech Ageing Dev 126(9):987–1002

    Article  CAS  Google Scholar 

  • Storer TW, Woodhouse L, Magliano L, Singh AB, Dzekov C, Dzekov J, Bhasin S (2008) Changes in muscle mass, muscle strength, and power but not physical function are related to testosterone dose in healthy older men. J Am Geriatr Soc 56(11):1991–1999

    Article  Google Scholar 

  • To K, Yamaza H, Komatsu T, Hayashida T, Hayashi H, Toyama H, Chiba T, Higami Y, Shimokawa I (2007) Down-regulation of AMP-activated protein kinase by calorie restriction in rat liver. Exp Gerontol 42(11):1063–1071

    Article  CAS  Google Scholar 

  • Valenti G (1997) DHEA replacement therapy for human aging: a call for perspective. Aging (Milan, Italy) 9(4 Suppl):71

    CAS  Google Scholar 

  • Valentovic M, Terneus M, Harmon RC, Carpenter AB (2004) S-Adenosylmethionine (SAMe) attenuates acetaminophen hepatotoxicity in C57BL/6 mice. Toxicol Lett 154(3):165–174

    Article  CAS  Google Scholar 

  • Van Antwerpen P, Legssyer I, Boudjeltia KZ, Babar S, Moreau P, Moguilevsky N, Vanhaeverbeek M, Ducobu J, Nève J (2006) Captopril inhibits the oxidative modification of apolipoprotein B-100 caused by myeloperoxydase in a comparative in vitro assay of angiotensin converting enzyme inhibitors. Eur J Pharmacol 537(1):31–36

    Article  Google Scholar 

  • Vistoli G, Orioli M, Pedretti A, Regazzoni L, Canevotti R, Negrisoli G, Carini M, Aldini G (2009) Design, synthesis, and evaluation of carnosine derivatives as selective and efficient sequestering agents of cytotoxic reactive carbonyl species. ChemMedChem 4(6):967–975

    Article  CAS  Google Scholar 

  • Wang M, Zhang J, Walker SJ, Dworakowski R, Lakatta EG, Shah AM (2010) Involvement of NADPH oxidase in age-associated cardiac remodeling. J Mol Cell Cardiol 48(4):765–772

    Article  CAS  Google Scholar 

  • Woo CC, Kumar AP, Sethi G, Tan KHB (2012) Thymoquinone: potential cure for inflammatory disorders and cancer. Biochem Pharmacol 83(4):443–451

    Article  CAS  Google Scholar 

  • Yanar K, Atukeren P, Cebe T, Kunbaz A, Ozan T, Kansu AD, Durmaz S, Güleç V, Belce A, Aydın S (2015) Ameliorative effects of testosterone administration on renal redox homeostasis in naturally aged rats. Rejuvenation Res 18(4):299–312

    Article  CAS  Google Scholar 

  • Zhao K, Luo G, Zhao G-M, Schiller PW, Szeto HH (2003) Transcellular transport of a highly polar 3+ net charge opioid tetrapeptide. J Pharmacol Exp Ther 304(1):425–432

    Article  CAS  Google Scholar 

  • Zhao K, Zhao G-M, Wu D, Soong Y, Birk AV, Schiller PW, Szeto HH (2004) Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J Biol Chem 279(33):34682–34690

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yanar, K. (2018). Novel Classification Perspective of Geroprotective and Senolytic Drugs as an Antiaging Strategy. In: Rizvi, S., Çakatay, U. (eds) Molecular Basis and Emerging Strategies for Anti-aging Interventions. Springer, Singapore. https://doi.org/10.1007/978-981-13-1699-9_6

Download citation

Publish with us

Policies and ethics