Skip to main content

The Potential Role of Stem Cell Reprogramming in Antiaging

  • Chapter
  • First Online:
Molecular Basis and Emerging Strategies for Anti-aging Interventions

Abstract

Aging is a natural process defined as a progressive decline in physiological functions which lead to increased risk of diseases and death. Recent advances in antiaging intervention have focused on stem cell-based therapies and cell reprogramming. The development of stem cell reprogramming to fight the aging process has recently become important issue in antiaging strategies. Stem cell-based therapies and cell reprogramming have provided various strategies to alter somatic cell identity into induced-pluripotent stem cell. Stem cells are defined as pluripotent cells that possess both the abilities of self-renewal and differentiation toward numerous cell types. Cell reprogramming is simply composed of deleting cell memory and rewriting new identity of somatic cell. Stem cell reprogramming has provided enormous insight on regenerative medicine for antiaging. This chapter has focused on potential role of stem cell reprogramming to slow down aging process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akunuru S, Geiger H (2016) Aging, clonality, and rejuvenation of hematopoietic stem cells. Trends Mol Med 22(8):701–712

    Article  CAS  Google Scholar 

  • Aoi T, Yae K, Nakagawa M et al (2008) Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 321:699–702

    Article  CAS  Google Scholar 

  • Avasthi S, Srivastava RN, Singh A et al (2008) Stem cells: past, present, future –a review article. Internet J Med Update 3(1):22–30

    Google Scholar 

  • Barrilleaux B, Phinney DG, Prockop DJ et al (2006) Review: ex vivo engineering of living tissues with adult stem cells. Tissue Eng 12:3007–3019

    Article  CAS  Google Scholar 

  • Behfar A, Perez-Terzic C, Faustino RS et al (2007) Cardiopoietic programming of embryonic stem cells for tumor-free heart repair. J Exp Med 204:405–420

    Article  CAS  Google Scholar 

  • Bernet JD, Doles JD, Hall JK et al (2014) p38 MAPK signaling underlies a cellautonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat Med 20:265–271

    Article  CAS  Google Scholar 

  • Bindu HA, Srilatha B (2011) Potency of various types of stem cells and their transplantation. J Stem Cell Res Ther 1(3):115

    Article  Google Scholar 

  • Blanpain C, Horsley V, Fuchs E (2007) Epithelial stem cells: turning over newleaves. Cell 128:445–458

    Article  CAS  Google Scholar 

  • Blau HM, Brazelton TR, Weimman JM (2001) The evolving concept of a stem cell: entity or function? Cell 106:829–841

    Article  Google Scholar 

  • Boyette LB, Tuan RS (2014) Adult stem cells and diseases of aging. J Clin Med 3(1):88–134

    Article  CAS  Google Scholar 

  • Carmona JJ, Michan S (2016) Biology of healthy aging and longevity. Rev Investig Clin 68:7–16

    CAS  Google Scholar 

  • Collins CA, Zammit PS, Ruiz AP et al (2007) A population of myogenic stem cells that survives skeletal muscle aging. Stem Cells 25:885–894

    Article  CAS  Google Scholar 

  • Cosgrove BD, Gilbert PM, Porpiglia E et al (2014) Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat Med 20:255–264

    Article  CAS  Google Scholar 

  • Donmez G, Guarente L (2010) Aging and disease: connections to sirtuins. Aging Cell 9(2):285–290

    Article  CAS  Google Scholar 

  • Dykstra B, Olthof S, Schreuder J et al (2011) Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells. J Exp Med 208:2691–2703

    Article  CAS  Google Scholar 

  • Feng R, Desbordes SC, Xie H et al (2008) PU.1 and C/EBPα/β convert fibroblasts into macrophage-like cells. Proc Natl Acad Sci U S A 105(16):6057–6062

    Article  CAS  Google Scholar 

  • Gardner RL (2002) Stem cells: potency, plasticity and public perception. J Anat 200:277–282

    Article  CAS  Google Scholar 

  • Griscelli F, Oudrhiri N, Feraud O et al (2017) Generation of induced pluripotent stem cell (iPSC) line from a patient with triple negative breast cancer with hereditary exon 17 deletion of BRCA1 gene. Stem Cell Res 24:135–138

    Article  CAS  Google Scholar 

  • Hall JA, Dominy JE, Lee Y et al (2013) The sirtuin family’s role in aging and age-associated pathologies. J Clin Invest 123(3):973–979

    Article  CAS  Google Scholar 

  • Hallett PJ, Deleidi M, Astradsson A et al (2015) Successful function of autologous iPSC-derived dopamine neurons following transplantation in a non-human primate model of Parkinson’s disease. Cell Stem Cell 16(3):269–274

    Article  CAS  Google Scholar 

  • Heman-Ackah SM, Manzano R, Hoozemans JJ et al (2017) Alpha-synuclein induces the unfolded protein response in Parkinson’s disease SNCA triplication iPSC-derived neurons. Hum Mol Genet 26(22):4441–4450

    Article  CAS  Google Scholar 

  • Hirami Y, Osakada F, Takahashi K et al (2009) Generation of retinal cells from mouse and human induced pluripotent stem cells. Neurosci Lett 458(3):126–131

    Article  CAS  Google Scholar 

  • Ichida J, Blanchard J, al Lam K (2009) A small-molecule inhibitor of Tgfbeta signaling replaces Sox2 in reprogramming by inducing Nanog. Cell Stem Cell 5:491–503

    Article  CAS  Google Scholar 

  • Ieda M, Fu JD, Delgado-Olguin P et al (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142(3):375–386

    Article  CAS  Google Scholar 

  • Jeevani T (2011) Stem cell transplantation-types, risks and benefits. J Stem Cell Res Ther 1(3):114

    Google Scholar 

  • Jones VC, Atkinson-Dell R, Verkhratsky A et al (2017) Aberrant iPSC-derived human astrocytes in Alzheimer’s disease. Cell Death Dis 8(3):2696

    Article  Google Scholar 

  • Kalra K, Tomar P (2014) Stem cell: basics, classification and applications. Am J Phyto Med Clin Ther:919–930

    Google Scholar 

  • Kasper G, Mao L, Geissler S et al (2009) Insights into mesenchymal stem cell aging: involvement of antioxidant defense and actin cytoskeleton. Stem Cells 27(6):1288–1297

    Article  CAS  Google Scholar 

  • Kudva YC, Ohmine S, Greder LV et al (2012) Transgene-free disease-specific induced pluripotent stem cells from patients with type 1 and type 2 diabetes. Stem Cells Transl Med 1(6):451–461

    Article  CAS  Google Scholar 

  • Lapasset L, Milhavet O, Prieur A et al (2011) Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state. Genes Dev 25:2248–2253

    Article  CAS  Google Scholar 

  • Lavu S, Boss O, Elliott PJ et al (2008) Sirtuins – novel therapeutic targets to treat age-associated diseases. Nat Rev Drug Discov 7(10):841

    Article  CAS  Google Scholar 

  • Lepperdinger G, Brunauer R, Gassner R et al (2008) Changes of the functional capacity of mesenchymal stem cells due to aging or age-associated disease–implications for clinical applications and donor recruitment. Transfus Med Hemother 35(4):299–305

    Article  Google Scholar 

  • Liu GH, Barkho BZ, Ruiz S et al (2011) Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome. Nature 472:221–225

    Article  CAS  Google Scholar 

  • López-León M, Outeiro TF, Goya RG (2017) Cell reprogramming: therapeutic potential and the promise of rejuvenation for the aging brain. Ageing Res Rev 40:168–181

    Article  Google Scholar 

  • Majo F, Rochat A, Nicolas M et al (2008) Oligopotentstem cells are distributed throughout the mammalian ocular surface. Nature 456:250–254

    Article  CAS  Google Scholar 

  • McGuckin CP, Jurga M, Miller AM et al (2013) Ischemic brain injury: a consortium analysis of key factors involved in mesenchymal stem cell-mediated inflammatory reduction. Arch Biochem Biophys 534(1–2):88–97

    Article  CAS  Google Scholar 

  • Mimeault M, Hauke R, Batra SK (2007) Stem cells: a revolution in therapeutics—recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clin Pharmacol Ther 82(3):252–264

    Article  CAS  Google Scholar 

  • Moore KA, Lemischka IR (2006) Stem cells and their niches. Science 311(5769):1880–1885

    Article  CAS  Google Scholar 

  • Narazaki G, Uosaki H, Teranishi M et al (2008) Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation 118(5):498–506

    Article  Google Scholar 

  • Niu W, Zang T, Smith DK et al (2015) SOX2 reprograms resident astrocytes into neural progenitors in the adult brain. Stem Cell Rep 4(5):780–794

    Article  CAS  Google Scholar 

  • Noda S, Ichikawa H, Miyoshi H (2009) Hematopoietic stem cell aging is associated with functional decline and delayed cell cycle progression. Biochem Biophys Res Commun 383(2):210–215

    Article  CAS  Google Scholar 

  • Ocampo A, Reddy P, Martinez-Redondo P et al (2016) In Vivo amelioration of age-associated hallmarks by partial reprogramming. Cell 167(7):1719–1733

    Article  CAS  Google Scholar 

  • Oh J, Lee YD, Wagers AJ (2014) Stem cell aging: mechanisms,regulators and therapeutic opportunities. Nat Med 20:870–880

    Article  CAS  Google Scholar 

  • Ohmine S, Squillace KA, Hartjes KA et al (2012) Reprogrammed keratinocytes from elderly type 2 diabetes patients suppress senescence genes to acquire induced pluripotency. Aging (Albany NY) 4(1):60–73

    Article  CAS  Google Scholar 

  • Pfisterer U, Kirkeby A, Torper O et al (2011) Direct conversion of human fibroblasts to dopaminergic neurons. Proc Natl Acad Sci U S A 108(25):10343–10348

    Article  CAS  Google Scholar 

  • Qi X, Zhang J, Yuan H et al (2016) Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells repair critical-sized bone defects through enhanced angiogenesis and osteogenesis in osteoporotic rats. Int J Biol Sci 12(7):836

    Article  CAS  Google Scholar 

  • Qian L, Huang Y, Spencer CI et al (2012) In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485(7400):593

    Article  CAS  Google Scholar 

  • Qiu X, Sun C, Yu W et al (2012) Combined strategy of mesenchymal stem cell injection with vascular endothelial growth factor gene therapy for the treatment of diabetes-associated erectile dysfunction. J Androl 33:37–44

    Article  CAS  Google Scholar 

  • Rando TA, Chang HY (2012) Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell 148(1):46–57

    Article  CAS  Google Scholar 

  • Rezvani M, Español-Suñer R, Malato Y et al (2016) In vivo hepatic reprogramming of myofibroblasts with AAV vectors as a therapeutic strategy for liver fibrosis. Cell Stem Cell 18(6):809–816

    Article  CAS  Google Scholar 

  • Senju S, Haruta M, Matsunaga Y et al (2009) Characterization of dendritic cells and macrophages generated by directed differentiation from mouse induced pluripotent stem cells. Stem Cell 27(5):1021–1031

    Article  CAS  Google Scholar 

  • Sharma A, Diecke S, Zhang WY et al (2013) The role of SIRT6 protein in aging and reprogramming of human induced pluripotent stem cells. J Bio Chem 288(25):18439–18447

    Article  CAS  Google Scholar 

  • Smith A (2001) Embryonic stem cells. Cold Spring Harb Monogr Ser 40:205–230

    Google Scholar 

  • Snykers S, Kock JD, Rogiers V et al (2009) In vitro differentiation of embryonic and adult stem cells into hepotocytes: state of the art. Stem Cells 27:577–605

    Article  CAS  Google Scholar 

  • Somers A, Jean JC, Sommer CA et al (2010) Generation of transgene-free lung disease-specific human induced pluripotent stem cells using a single excisable lentiviral stem cell cassette. Stem Cells 28:1728–1740

    Article  CAS  Google Scholar 

  • Song G, Pacher M, Balakrishnan A et al (2016) Direct reprogramming of hepatic myofibroblasts into hepatocytes in vivo attenuates liver fibrosis. Cell Stem Cell 18(6):797–808

    Article  CAS  Google Scholar 

  • Taguchi J, Yamada Y (2017) In vivo reprogramming for tissue regeneration and organismal rejuvenation. Curr Opin Genet Dev 46:132–140

    Article  CAS  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  CAS  Google Scholar 

  • Torper O, Pfisterer U, Wolf DA et al (2013) Generation of induced neurons via direct conversion in vivo. Proc Natl Acad Sci U S A 110(17):7038–7043

    Article  CAS  Google Scholar 

  • Toustrup LB, Zhou Y, Kvistgaard H et al (2017) Induced pluripotent stem cells derived from a patient with autosomal dominant familial neurohypophyseal diabetes insipidus caused by a variant in the AVP gene. Stem Cell Res 19:37–42

    Article  Google Scholar 

  • Uhlenhaut NH, Jakob S, Anlag K et al (2009) Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell 139(6):1130–1142

    Article  CAS  Google Scholar 

  • Vakhrusheva O, Smolka C, Gajawada P et al (2008) Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ Res 102:703–710

    Article  CAS  Google Scholar 

  • Valarmathi MT, Fuseler JW (2011) Mammalian cardiac muscle regeneration:structural and functional modulation of adult marrow stromal stem cells. Anatom Physiol 1:102

    Article  Google Scholar 

  • Verfaillie CM, Pera MF, Lansdorp PM (2002) Stem cells: hype and reality. Am Soc Hem Educ Program 2002(1):369–391

    Google Scholar 

  • Vierbuchen T, Ostermeier A, Pang ZP et al (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463(7284):1035

    Article  CAS  Google Scholar 

  • Vilchez D, Simic MS, Dillin A (2013) Proteostasis and aging of stem cells. Trends Cell Biol 24:161–170

    Article  Google Scholar 

  • Xie H, Ye M, Feng R et al (2004) Stepwise reprogramming of B cells into macrophages. Cell 117(5):663–676

    Article  CAS  Google Scholar 

  • Yagi T, Kosakai A, Ito D et al (2012) Establishment of induced pluripotent stem cells from centenarians for neurodegenerative disease research. PLoS One 7(7):41572

    Article  Google Scholar 

  • Yagi H, Tan J, Tuan RS (2013) Polyphenols suppress hydrogen peroxide-induced oxidative stress in human bone-marrow derived mesenchymal stem cells. J Cell Biochem 114(5):1163–1173

    Article  CAS  Google Scholar 

  • Yang J, Li S, He XB, Cheng C, Le W (2016) Induced pluripotent stem cells in Alzheimer’s disease: applications for disease modeling and cell-replacement therapy. Mol Neurodegener 11(1):39

    Article  Google Scholar 

  • Young HE, Black AC Jr (2004) Adult stem cells. Anat Rec A Discov Mol Cell Evol Biol 276:75–102

    Article  Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  CAS  Google Scholar 

  • Zhang J, Lian Q, Zhu G et al (2011) A human iPSC model of Hutchinson Gilford Progeria reveals vascular smooth muscle and mesenchymal stem cell defects. Cell Stem Cell 8:31–45

    Article  CAS  Google Scholar 

  • Zhou Q, Brown J, Kanarek A et al (2008) In vivo reprogramming of adult pancreatic exocrine cells to β-cells. Nature 455(7213):627

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melike Erkan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Orta Yilmaz, B., Erkan, M. (2018). The Potential Role of Stem Cell Reprogramming in Antiaging. In: Rizvi, S., Çakatay, U. (eds) Molecular Basis and Emerging Strategies for Anti-aging Interventions. Springer, Singapore. https://doi.org/10.1007/978-981-13-1699-9_3

Download citation

Publish with us

Policies and ethics