Skip to main content

Non-coding RNAs as Potential Targets for Treatment and Early Diagnosis of Age-Associated Neurodegenerative Diseases

  • Chapter
  • First Online:
Molecular Basis and Emerging Strategies for Anti-aging Interventions

Abstract

Neurodegenerative diseases (NDs) are debilitating disorders affecting a significant portion of the world’s rapidly growing aging population. Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington disease (HD), and amyotrophic lateral sclerosis (ALS) are the most common NDs. These diseases constitute a group of disorders, wherein aggregation of misfolded proteins, mitochondrial function, disruption of cellular signaling, and neuronal cell death occurs. The exact etiology is still unknown, and hence a complete cure to these diseases is yet to be found, partly because these diseases are multifactorial in nature and a single factor responsible for cause and progression of these ailments is not known to exist. Recent studies indicate that non-coding RNAs (particularly miRNAs and circRNAs) are possibly involved in progression of various neurodegenerative diseases. Precisely, miRNAs are highly expressed in the neurons of central nervous system where they play pivotal role during neuronal differentiation and neuronal plasticity. The nature of miRNAs to regulate hundreds of genes, thereby multiple pathways simultaneously, makes it possible that any common miRNA may trigger multiple pathways associated with NDs. The ability of circRNAs to regulate the function of miRNAs by sponging has emerged as interesting possibility, thus being explored as biomarker and as potential novel target for therapeutic intervention against these ailments. Here, we provide an overview on the potential target of non-coding RNAs (miRNAs and circRNAs) in various NDs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adlakha YK, Saini N (2014) Brain microRNAs and insights into biological functions and therapeutic potential of brain enriched miRNA-128. Mol Cancer 13:33

    Article  Google Scholar 

  • Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29:341–345

    Article  CAS  Google Scholar 

  • Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  CAS  Google Scholar 

  • Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, Kadener S (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56:55–66

    Article  CAS  Google Scholar 

  • Bader AG, Brown D, Winkler M (2010) The promise of microRNA replacement therapy. Cancer Res 70:7027–7030

    Article  CAS  Google Scholar 

  • Bilen J, Liu N, Burnett BG, Pittman RN, Bonini NM (2006) MicroRNA pathways modulate polyglutamine-induced neurodegeneration. Mol Cell 24:157–163

    Article  CAS  Google Scholar 

  • Brandt R, Leschik J (2004) Functional interactions of tau and their relevance for Alzheimer’s disease. Curr Alzheimer Res 1:255–269

    Article  CAS  Google Scholar 

  • Carrieri C, Forrest AR, Santoro C, Persichetti F, Carninci P, Zucchelli S, Gustincich S (2015) Expression analysis of the long non-coding RNA antisense to Uchl1 (AS Uchl1) during dopaminergic cells’ differentiation in vitro and in neurochemical models of Parkinson’s disease. Front Cell Neurosci 9:114

    Article  Google Scholar 

  • Conaco C, Otto S, Han JJ, Mandel G (2006) Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci U S A 103:2422–2427

    Article  CAS  Google Scholar 

  • Coppede F (2012) Genetics and epigenetics of Parkinson’s disease. Sci World J 2012:489830

    Article  Google Scholar 

  • Cortes-Lopez M, Gruner MR, Cooper DA, Gruner HN, Voda AI, van der Linden AM, Miura P (2018) Global accumulation of circRNAs during aging in Caenorhabditis elegans. BMC Genomics 19:8

    Article  Google Scholar 

  • Croese T, Furlan R (2017) Extracellular vesicles in neurodegenerative diseases. Mol Asp Med 60:52–61

    Article  CAS  Google Scholar 

  • Dikiy I, Eliezer D (2012) Folding and misfolding of alpha-synuclein on membranes. Biochim Biophys Acta 1818:1013–1018

    Article  CAS  Google Scholar 

  • Dimmeler S, Nicotera P (2013) MicroRNAs in age-related diseases. EMBO Mol Med 5:180–190

    Article  CAS  Google Scholar 

  • Doxakis E (2010) Post-transcriptional regulation of alpha-synuclein expression by mir-7 and mir-153. J Biol Chem 285:12726–12734

    Article  CAS  Google Scholar 

  • Femminella GD, Ferrara N, Rengo G (2015) The emerging role of microRNAs in Alzheimer’s disease. Front Physiol 6:40

    Article  Google Scholar 

  • Gehrke S, Imai Y, Sokol N, Lu B (2010) Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression. Nature 466:637–641

    Article  CAS  Google Scholar 

  • Gourie-Devi M (2014) Epidemiology of neurological disorders in India: review of background, prevalence and incidence of epilepsy, stroke, Parkinson’s disease and tremors. Neurol India 62:588–598

    Article  CAS  Google Scholar 

  • Harraz MM, Dawson TM, Dawson VL (2011) MicroRNAs in Parkinson’s disease. J Chem Neuroanat 42:127–130

    Article  CAS  Google Scholar 

  • Hebert SS, Horre K, Nicolai L, Papadopoulou AS, Mandemakers W, Silahtaroglu AN, Kauppinen S, Delacourte A, De Strooper B (2008) Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci U S A 105:6415–6420

    Article  CAS  Google Scholar 

  • Hebert SS, Sergeant N, Buee L (2012) MicroRNAs and the regulation of tau metabolism. Int J Alzheimers Dis 2012:406561

    PubMed  PubMed Central  Google Scholar 

  • Hirano A (1994) Hirano bodies and related neuronal inclusions. Neuropathol Appl Neurobiol 20:3–11

    Article  CAS  Google Scholar 

  • Hoss AG, Labadorf A, Beach TG, Latourelle JC, Myers RH (2016) microRNA profiles in Parkinson’s disease prefrontal cortex. Front Aging Neurosci 8:36

    Article  Google Scholar 

  • http://www.parkinson.org/Understanding-Parkinsons/Causes-and-Statistics/Statistics

    Google Scholar 

  • https://www.alz.org/documents_custom/2016-facts-and-figures.pdfs

    Google Scholar 

  • Johnson R, Buckley NJ (2009) Gene dysregulation in Huntington’s disease: REST, microRNAs and beyond. Neuromol Med 11:183–199

    Article  CAS  Google Scholar 

  • Johnson R, Teh CH, Jia H, Vanisri RR, Pandey T, Lu ZH, Buckley NJ, Stanton LW, Lipovich L (2009) Regulation of neural macroRNAs by the transcriptional repressor REST. RNA 15:85–96

    Article  CAS  Google Scholar 

  • Junn E, Lee KW, Jeong BS, Chan TW, Im JY, Mouradian MM (2009) Repression of alpha-synuclein expression and toxicity by microRNA-7. Proc Natl Acad Sci U S A 106:13052–13057

    Article  CAS  Google Scholar 

  • Kota J, Chivukula RR, O’Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, Chang TC, Vivekanandan P, Torbenson M, Clark KR, Mendell JR, Mendell JT (2009) Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137:1005–1017

    Article  CAS  Google Scholar 

  • Koval ED, Shaner C, Zhang P, du Maine X, Fischer K, Tay J, Chau BN, Wu GF, Miller TM (2013) Method for widespread microRNA-155 inhibition prolongs survival in ALS-model mice. Hum Mol Genet 22:4127–4135

    Article  CAS  Google Scholar 

  • Kumar L, Shamsuzzama, Haque R, Baghel T, Nazir A (2016) Circular RNAs: the emerging class of non-coding RNAs and their potential role in human neurodegenerative diseases. Mol Neurobiol 54:7224–7234

    Article  Google Scholar 

  • Kumar S, Vijayan M, Bhatti JS, Reddy PH (2017) MicroRNAs as peripheral biomarkers in aging and age-related diseases. Prog Mol Biol Transl Sci 146:47–94

    Article  CAS  Google Scholar 

  • Lages E, Ipas H, Guttin A, Nesr H, Berger F, Issartel JP (2012) MicroRNAs: molecular features and role in cancer. Front Biosci 17:2508–2540

    Article  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  Google Scholar 

  • Lees AJ (2007) Unresolved issues relating to the shaking palsy on the celebration of James Parkinson’s 250th birthday. Mov Disord Off J Mov Disord Soc 22(Suppl 17):S327–S334

    Article  Google Scholar 

  • Liang Y, Ridzon D, Wong L, Chen C (2007) Characterization of microRNA expression profiles in normal human tissues. BMC Genomics 8:166

    Article  Google Scholar 

  • Maes OC, An J, Sarojini H, Wang E (2008) Murine microRNAs implicated in liver functions and aging process. Mech Ageing Dev 129:534–541

    Article  CAS  Google Scholar 

  • Marcuzzo S, Kapetis D, Mantegazza R, Baggi F, Bonanno S, Barzago C, Cavalcante P, Kerlero de Rosbo N, Bernasconi P (2014) Altered miRNA expression is associated with neuronal fate in G93A-SOD1 ependymal stem progenitor cells. Exp Neurol 253:91–101

    Article  CAS  Google Scholar 

  • Marti E, Pantano L, Banez-Coronel M, Llorens F, Minones-Moyano E, Porta S, Sumoy L, Ferrer I, Estivill X (2010) A myriad of miRNA variants in control and Huntington’s disease brain regions detected by massively parallel sequencing. Nucleic Acids Res 38:7219–7235

    Article  CAS  Google Scholar 

  • Massano J, Bhatia KP (2012) Clinical approach to Parkinson’s disease: features, diagnosis, and principles of management. Cold Spring Harb Perspect Med 2:a008870

    Article  Google Scholar 

  • Massone S, Vassallo I, Fiorino G, Castelnuovo M, Barbieri F, Borghi R, Tabaton M, Robello M, Gatta E, Russo C, Florio T, Dieci G, Cancedda R, Pagano A (2011) 17A, a novel non-coding RNA, regulates GABA B alternative splicing and signaling in response to inflammatory stimuli and in Alzheimer disease. Neurobiol Dis 41:308–317

    Article  CAS  Google Scholar 

  • Meza-Sosa KF, Valle-Garcia D, Pedraza-Alva G, Perez-Martinez L (2012) Role of microRNAs in central nervous system development and pathology. J Neurosci Res 90:1–12

    Article  CAS  Google Scholar 

  • Minones-Moyano E, Porta S, Escaramis G, Rabionet R, Iraola S, Kagerbauer B, Espinosa-Parrilla Y, Ferrer I, Estivill X, Marti E (2011) MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum Mol Genet 20:3067–3078

    Article  CAS  Google Scholar 

  • Modarresi F, Faghihi MA, Patel NS, Sahagan BG, Wahlestedt C, Lopez-Toledano MA (2011) Knockdown of BACE1-AS nonprotein-coding transcript modulates beta-amyloid-related hippocampal neurogenesis. Int J Alzheimers Dis 2011:929042

    PubMed  PubMed Central  Google Scholar 

  • Mus E, Hof PR, Tiedge H (2007) Dendritic BC200 RNA in aging and in Alzheimer’s disease. Proc Natl Acad Sci U S A 104:10679–10684

    Article  CAS  Google Scholar 

  • Nolan K, Mitchem MR, Jimenez-Mateos EM, Henshall DC, Concannon CG, Prehn JH (2014) Increased expression of microRNA-29a in ALS mice: functional analysis of its inhibition. J Mol Neurosci MN 53:231–241

    Article  CAS  Google Scholar 

  • Packer AN, Xing Y, Harper SQ, Jones L, Davidson BL (2008) The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington’s disease. J Neurosci Off J Soc Neurosci 28:14341–14346

    Article  CAS  Google Scholar 

  • Parisi C, Arisi I, D’Ambrosi N, Storti AE, Brandi R, D’Onofrio M, Volonte C (2013) Dysregulated microRNAs in amyotrophic lateral sclerosis microglia modulate genes linked to neuroinflammation. Cell Death Dis 4:e959

    Article  CAS  Google Scholar 

  • Pereira P, Queiroz JA, Figueiras A, Sousa F (2017) Current progress on microRNAs-based therapeutics in neurodegenerative diseases, Wiley interdisciplinary reviews. RNA 8. https://doi.org/10.1002/wrna.1409

    Article  Google Scholar 

  • Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906

    Article  CAS  Google Scholar 

  • Russell AP, Wada S, Vergani L, Hock MB, Lamon S, Leger B, Ushida T, Cartoni R, Wadley GD, Hespel P, Kralli A, Soraru G, Angelini C, Akimoto T (2013) Disruption of skeletal muscle mitochondrial network genes and miRNAs in amyotrophic lateral sclerosis. Neurobiol Dis 49:107–117

    Article  CAS  Google Scholar 

  • Rybak-Wolf A, Stottmeister C, Glazar P, Jens M, Pino N, Giusti S, Hanan M, Behm M, Bartok O, Ashwal-Fluss R, Herzog M, Schreyer L, Papavasileiou P, Ivanov A, Ohman M, Refojo D, Kadener S, Rajewsky N (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 58:870–885

    Article  CAS  Google Scholar 

  • Schonrock N, Matamales M, Ittner LM, Gotz J (2012) MicroRNA networks surrounding APP and amyloid-beta metabolism – implications for Alzheimer’s disease. Exp Neurol 235:447–454

    Article  CAS  Google Scholar 

  • Shamsuzzama, Kumar L, Nazir A (2017) Modulation of alpha-synuclein expression and associated effects by microRNA Let-7 in Transgenic C. elegans. Front Mol Neurosci 10:328

    Article  CAS  Google Scholar 

  • Slack FJ, Basson M, Liu Z, Ambros V, Horvitz HR, Ruvkun G (2000) The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol Cell 5:659–669

    Article  CAS  Google Scholar 

  • Smeenk L, van Heeringen SJ, Koeppel M, Gilbert B, Janssen-Megens E, Stunnenberg HG, Lohrum M (2011) Role of p53 serine 46 in p53 target gene regulation. PLoS One 6:e17574

    Article  CAS  Google Scholar 

  • Soreq L, Guffanti A, Salomonis N, Simchovitz A, Israel Z, Bergman H, Soreq H (2014) Long non-coding RNA and alternative splicing modulations in Parkinson’s leukocytes identified by RNA sequencing. PLoS Comput Biol 10:e1003517

    Article  Google Scholar 

  • Toivonen JM, Manzano R, Olivan S, Zaragoza P, Garcia-Redondo A, Osta R (2014) MicroRNA-206: a potential circulating biomarker candidate for amyotrophic lateral sclerosis. PLoS One 9:e89065

    Article  Google Scholar 

  • Valdez G, Heyer MP, Feng G, Sanes JR (2014) The role of muscle microRNAs in repairing the neuromuscular junction. PLoS One 9:e93140

    Article  Google Scholar 

  • Wang WX, Rajeev BW, Stromberg AJ, Ren N, Tang G, Huang Q, Rigoutsos I, Nelson PT (2008a) The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci Off J Soc Neurosci 28:1213–1223

    Article  Google Scholar 

  • Wang G, van der Walt JM, Mayhew G, Li YJ, Zuchner S, Scott WK, Martin ER, Vance JM (2008b) Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. Am J Hum Genet 82:283–289

    Article  CAS  Google Scholar 

  • Wang LL, Huang Y, Wang G, Chen SD (2012) The potential role of microRNA-146 in Alzheimer’s disease: biomarker or therapeutic target? Med Hypotheses 78:398–401

    Article  CAS  Google Scholar 

  • Weinberg MS, Wood MJ (2009) Short non-coding RNA biology and neurodegenerative disorders: novel disease targets and therapeutics. Hum Mol Genet 18:R27–R39

    Article  CAS  Google Scholar 

  • Westholm JO, Miura P, Olson S, Shenker S, Joseph B, Sanfilippo P, Celniker SE, Graveley BR, Lai EC (2014) Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep 9:1966–1980

    Article  CAS  Google Scholar 

  • Wiggins JF, Ruffino L, Kelnar K, Omotola M, Patrawala L, Brown D, Bader AG (2010) Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res 70:5923–5930

    Article  CAS  Google Scholar 

  • Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–862

    Article  CAS  Google Scholar 

  • Williams AH, Valdez G, Moresi V, Qi X, McAnally J, Elliott JL, Bassel-Duby R, Sanes JR, Olson EN (2009) MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science 326:1549–1554

    Article  CAS  Google Scholar 

  • Yao J, Hennessey T, Flynt A, Lai E, Beal MF, Lin MT (2010) MicroRNA-related cofilin abnormality in Alzheimer’s disease. PLoS One 5:e15546

    Article  CAS  Google Scholar 

  • You X, Vlatkovic I, Babic A, Will T, Epstein I, Tushev G, Akbalik G, Wang M, Glock C, Quedenau C, Wang X, Hou J, Liu H, Sun W, Sambandan S, Chen T, Schuman EM, Chen W (2015) Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci 18:603–610

    Article  CAS  Google Scholar 

  • Zhang Z, Pinto AM, Wan L, Wang W, Berg MG, Oliva I, Singh LN, Dengler C, Wei Z, Dreyfuss G (2013) Dysregulation of synaptogenesis genes antecedes motor neuron pathology in spinal muscular atrophy. Proc Natl Acad Sci U S A 110:19348–19353

    Article  CAS  Google Scholar 

  • Zhou F, Guan Y, Chen Y, Zhang C, Yu L, Gao H, Du H, Liu B, Wang X (2013) miRNA-9 expression is upregulated in the spinal cord of G93A-SOD1 transgenic mice. Int J Clin Exp Pathol 6:1826–1838

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aamir Nazir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shamsuzzama, Kumar, L., Haque, R., Nazir, A. (2018). Non-coding RNAs as Potential Targets for Treatment and Early Diagnosis of Age-Associated Neurodegenerative Diseases. In: Rizvi, S., Çakatay, U. (eds) Molecular Basis and Emerging Strategies for Anti-aging Interventions. Springer, Singapore. https://doi.org/10.1007/978-981-13-1699-9_2

Download citation

Publish with us

Policies and ethics