Skip to main content

Schottky Group Actions in Complex Geometry

  • Conference paper
  • First Online:
Geometric Complex Analysis

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 246))

Abstract

This paper discusses some recent progress on Schottky group actions on compact and non-compact complex manifolds.

Dedicated to Kang-Tae Kim at the occasion of his 60th birthday.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A flag manifold \(X=G/P\) is called irreducible if P is a maximal parabolic subgroup of G, i.e., if P is not properly contained in any proper parabolic subgroup of G.

References

  1. Akhiezer, D.N.: Dense orbits with two endpoints. Izv. Akad. Nauk SSSR Ser. Mat. 41(2), 308–324 (1977). 477

    Google Scholar 

  2. Blanchard, A.: Sur les variétés analytiques complexes. Ann. Sci. Ecole Norm. Sup. 73, 157–202 (1956)

    Article  MathSciNet  Google Scholar 

  3. Bowditch, B.H.: Geometrical finiteness with variable negative curvature. Duke Math. J. 77(1), 229–274 (1995)

    Article  MathSciNet  Google Scholar 

  4. Bremigan, R., Lorch, J.: Orbit duality for flag manifolds. Manuscripta Math. 109(2), 233–261 (2002)

    Article  MathSciNet  Google Scholar 

  5. Cano, A.: Schottky groups can not act on \(\mathbf{P}^{2n}_{\mathbf{C}}\) as subgroups of \({\rm PSL}_{2n+1} (\mathbf{C})\). Bull. Braz. Math. Soc. (N.S.) 39(4), 573–586 (2008)

    Google Scholar 

  6. Cano, A., Navarrete, J.P., Seade, J.: Complex Kleinian Groups, Progress in Mathematics, vol. 303. Birkhäuser/Springer Basel AG, Basel (2013)

    Book  Google Scholar 

  7. Goldman, W.M.: Complex hyperbolic geometry. Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1999)

    Google Scholar 

  8. Guillot, A.: Sur les équations d’Halphen et les actions de \({\rm SL}_2(\mathbb{C})\). Publ. Math. Inst. Hautes Études Sci. 105, 221–294 (2007)

    Google Scholar 

  9. Kapovich, M., Leeb, B., Porti, J.: Some recent results on Anosov representations. Transform. Groups 21(4), 1105–1121 (2016)

    Article  MathSciNet  Google Scholar 

  10. Kato, M.: Examples of simply connected compact complex 3-folds. Tokyo J. Math. 5(2), 341–264 (1982)

    Google Scholar 

  11. Kato, M.: On compact complex \(3\)-folds with lines. Tokyo J. Math. 11 (1985)

    Google Scholar 

  12. Kato, M.: Factorization of compact complex \(3\)-folds which admit certain projective structures. Tôhoku Math. J. 41, 359–397 (1989)

    Google Scholar 

  13. Kato, M.: Compact quotients with positive algebraic dimensions of large domains in a complex projective 3-space. J. Math. Soc. Jpn 62(4), 1317–1371 (2010)

    Article  Google Scholar 

  14. Koebe, P.: Über die Uniformisierung der algebraischen Kurven II. Math. Ann. 69(1), 1–81 (1910)

    Google Scholar 

  15. Lárusson, F.: Compact quotients of large domains in complex projective space. Ann. Inst. Fourier (Grenoble) 48(1), 223–246 (1998)

    Article  MathSciNet  Google Scholar 

  16. Link, G.: Geometry and dynamics of discrete isometry groups of higher rank symmetric spaces. Geom. Dedicata 122, 51–75 (2006)

    Article  MathSciNet  Google Scholar 

  17. Maskit, B.: A characterization of Schottky groups. J. Analyse Math. 19, 227–230 (1967)

    Article  MathSciNet  Google Scholar 

  18. Miebach, C., Oeljeklaus, K.: Schottky groups acting on homogeneous rational manifolds. J. Reine Angew. Math. https://doi.org/10.1515/crelle-2016-0065 (to appear)

  19. Nori, M.V.: Schottky, The groups in higher dimensions, The Lefschetz centennial conference, Part I (Mexico City, Contemp. Math., vol. 58, Amer. Math. Soc. Providence, RI 1986, 195–197 (1984)

    Google Scholar 

  20. Seade, J., Verjovsky, A.: Complex Schottky groups. Astérisque 287(xx), 251–272 (2003). Geometric methods in dynamics. II

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Oeljeklaus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Miebach, C., Oeljeklaus, K. (2018). Schottky Group Actions in Complex Geometry. In: Byun, J., Cho, H., Kim, S., Lee, KH., Park, JD. (eds) Geometric Complex Analysis. Springer Proceedings in Mathematics & Statistics, vol 246. Springer, Singapore. https://doi.org/10.1007/978-981-13-1672-2_20

Download citation

Publish with us

Policies and ethics