Skip to main content

High-SNR Hyperspectral Night-Vision Image Acquisition with Multiplexing

  • Chapter
  • First Online:
Night Vision Processing and Understanding
  • 590 Accesses

Abstract

High-throughput and high-spectral resolution are essential requirements for spectrometers. Conventional slit-based spectrometers require the input slit to be narrow to achieve a reasonable resolution. However, too small a slit cannot gather enough radiation. Many designs have been presented to address these demands. One method (i.e. the Jacquinot advantage) maximised throughput without sacrificing spectral resolution. Over several decades, there have been two important, strongly investigated approaches to improving spectrometre performance. One resulted in the coded-aperture spectrometre (CAS); another resulted in the Fourier transform spectrometre (FTS). CAS replaced the slit with a two-dimensional coded matrix aperture (i.e. mask), introduced to increase light throughput without loss of spectral resolution. After more than half a century of development, the top CAS is the Hadamard transform spectrometre (HTS), whose encoded aperture theories are based on Hadamard matrices. However, there have more recently been some new static, multiplex CASs proposed, based on new mathematical models. In this chapter, we introduce the multiplexing measurements applied to spectrometers for high-SNR data acquisition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bian, X., Zhang, T., Yan, L., Zhang, X., Fang, H., & Liu, H. (2013). Spatial–spectral method for classification of hyperspectral images. Optics Letters, 38, 815–817.

    Article  Google Scholar 

  • Cull, E. C., Gehm, M. E., Brady, D. J., Hsieh, C. R., Momtahan, O., & Adibi, A. (2007). Dispersion multiplexing with broadband filtering for miniature spectrometers. Applied Optics, 46, 365.

    Article  Google Scholar 

  • Damaschini, R. (1993). Limitation of the multiplex gain in Hadamard transform spectroscopy. Pure and Applied Optics, 2, 173–178.

    Article  Google Scholar 

  • Girard, A. (1963). Spectrometre a grilles. Applied optics, 2(1), 79–87.

    Article  Google Scholar 

  • Golay, M. J. E. (1949). Multi-slit spectrometry. Journal of the Optical Society of America, 39(6), 437–444.

    Article  Google Scholar 

  • Golay, M. J. E. (1951). Static multislit spectrometry and its application to the panoramic display of infrared spectra. Journal of the Optical Society of America, 41, 468–472.

    Article  Google Scholar 

  • Harwit, M., & Sloane, N. J. A. (1979). Hadamard transform optics (p. 1444). New York: Academic Press.

    MATH  Google Scholar 

  • Ibbett, R. N., Aspinall, D., & Grainger, J. F. (1968). Real-time multiplexing of dispersed spectra in any wavelength region. Applied Optics, 7(6), 1089–1094.

    Article  Google Scholar 

  • Lucke, R. L., Corson, M., McGlothlin, N. R., Butcher, S. D., Wood, D. L., Korwan, D. R., et al. (2011). Hyperspectral Imager for the Coastal Ocean: Instrument description and first images. Applied Optics, 50, 1501–1516.

    Article  Google Scholar 

  • Moses, W. J., Bowles, J. H., Lucke, R. L., & Corson, M. R. (2012). Impact of signal-to-noise ratio in a hyperspectral sensor on the accuracy of biophysical parameter estimation in case II waters. Optics Express, 20(4), 4309.

    Article  Google Scholar 

  • Mrozack, A., Marks, D. L., & Brady, D. J. (2012). Coded aperture spectroscopy with denoising through sparsity. Optics Express, 20, 2297–2309.

    Article  Google Scholar 

  • Shimano, N. (2006). Recovery of spectral reflectances of objects being imaged without prior knowledge. IEEE Transactions on Image Processing, 15, 1848–1856.

    Article  Google Scholar 

  • Snyder, D. L., Helstrom, C. W., Lanterman, A. D., Faisal, M., & White, R. L. (1995). Compensation for readout noise in CCD images. Journal of the Optical Society of America A. Optics and Image Science, 12, 272–283.

    Article  Google Scholar 

  • Streeter, L., Burling-Claridge, G. R., Cree, M. J., & Künnemeyer, R. (2009). Optical full Hadamard matrix multiplexing and noise effects. Applied Optics, 48, 2078–2085.

    Article  Google Scholar 

  • Sun, X., Hu, B., Li, L., & Wang, Z. (2012). An engineering prototype of Hadamard transform spectral imager based on digital micro-mirror Device. Optics & Laser Technology, 44, 210–217.

    Article  Google Scholar 

  • Tilotta, D. C., Hammaker, R. M., & Fateley, W. G. (1987). Multiplex advantage in Hadamard transform spectrometry utilizing solid-state encoding masks with uniform, bistable optical transmission defects. Applied Optics, 26, 4285–4292.

    Article  Google Scholar 

  • Wang, Z., Yue, J., & Han, J. (2017). High-SNR spectrum measurement based on Hadamard encoding and sparse reconstruction. Applied Physics, 123, 277.

    Article  Google Scholar 

  • Wuttig, A. (2005). Optimal transformations for optical multiplex measurements in the presence of photon noise. Applied Optics, 44, 2710–2719.

    Article  Google Scholar 

  • Xiang, D., & Arnold, M. A. (2011). Solid-state digital micro-mirror array spectrometre for Hadamard transform measurements of glucose and lactate in aqueous solutions. Applied Spectroscopy, 65, 1170–1180.

    Article  Google Scholar 

  • Xu, J., Hu, B., Feng, D., Fan, X., & Qian, Q. (2012). Analysis and study of the interlaced encoding pixels in Hadamard transform spectral imager based on DMD. Optics and Lasers in Engineering, 50, 458–464.

    Article  Google Scholar 

  • Yue, J., Han, J., & Li, L. (2018). Denoising analysis of spatial pixel multiplex coded spectrometre with Hadamard H-matrix. Optics Communications, 407, 355–360.

    Article  Google Scholar 

  • Yue, J., Han, J., Zhang, Y., & Bai, L. (2014). High-throughput deconvolution-resolved computational spectrometre. Chinese Optics Letters, 12, 043001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianfa Bai .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bai, L., Han, J., Yue, J. (2019). High-SNR Hyperspectral Night-Vision Image Acquisition with Multiplexing. In: Night Vision Processing and Understanding. Springer, Singapore. https://doi.org/10.1007/978-981-13-1669-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1669-2_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1668-5

  • Online ISBN: 978-981-13-1669-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics