Skip to main content

Introduction

  • Chapter
  • First Online:
Night Vision Processing and Understanding
  • 574 Accesses

Abstract

Night-vision technology is used to extend human activities beyond the limits of natural visual ability. For example, it is widely used in military and civilian fields for observation, monitoring and low-light detection. Night-vision research includes low-level-light (LLL) vision, infrared thermal imaging, ultraviolet imaging and active near-infrared systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baldi, P., & Hornik, K. (1989). Neural networks and principal component analysis: Learning from examples without local minima. Neural Networks, 2(1), 53–58.

    Article  Google Scholar 

  • Belkin, M., & Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15, 1373–1396.

    Article  Google Scholar 

  • Burl, M. C., Fowlkes, C., Roden, J., Stechert, A., Muukhtar, S. (1999). Diamond eye: A distributed architecture for image data mining. In SPIE Conference on Data Mining and Knowledge Discovery (Vol. 3695, pp. 197–206).

    Google Scholar 

  • Chang, H., & Yeung, D. (2006). Robust locally linear embedding. Pattern Recognition, 39(6), 1053–1065.

    Article  Google Scholar 

  • Chapelle, O., Scholkopf, B., Zien, A. (2006). Semi-supervised learning. The MIT Press.

    Google Scholar 

  • Chen, H., Chang, H., Liu, T. (2005). Local discriminant embedding and its variants. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (Vol. 2, pp. 846–853).

    Google Scholar 

  • Chen, J., Ma, S. (2011). Locally linear embedding: A review. International Journal of Pattern Recognition and Artificial Intelligence, 25(07).

    Article  MathSciNet  Google Scholar 

  • Choi, H., & Choi, S. (2007). Robust kernel Isomap. Pattern Recognition, 40, 853–862.

    Article  Google Scholar 

  • Coifman, R. R., & Lafon, S. (2006). Diffusion maps. Applied and Computational Harmonic Analysis, 221(1), 5–30.

    Article  MathSciNet  Google Scholar 

  • Cox, T., & Cox, M. (2008). Multidimensional scaling (pp. 315–347). Berlin Heidelberg: Springer.

    MATH  Google Scholar 

  • Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 886–893), San Diego, CA, USA.

    Google Scholar 

  • Datcu, M., Seidel, K., Walessa, M. (1998). Spatial information retrieval from remote sensing images. Part I: Information theoretical perspective. IEEE Transactions on Geoscience & Remote Sensing, 36(5), 1431–1445.

    Google Scholar 

  • de Ridder, D., Kouropteva, O., Okun, O., Pietikäinen, M., & Duin, R. P. W. (2003). Supervised locally linear embedding. ICANN/ICONIP, 2(714), 333–341.

    MATH  Google Scholar 

  • Donoho, D. (2000). High-dimensional data analysis: The curses and blessings of dimensionality. In Mathematical Challenges of the 21st Century. Los Angeles, CA: American Mathematical Society.

    Google Scholar 

  • Donoho, D. L., Grimes, C. (2003). Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proceedings of National Academy of Sciences of the United States of America, 100(10), 5591–5596.

    Article  MathSciNet  Google Scholar 

  • Duda, R. O., Hart, P E., Stork, D. G. (2000). Pattern classification. Wiley-lnterscience Publication.

    Google Scholar 

  • Edelman, S. (1999). Representation and recognition in vision. Cambridge, MA: MIT Press.

    Book  Google Scholar 

  • Foschi, P. G., Kolippakkam, D., Liu, H., Mandvikar, A. (2002). Feature extraction for image mining. In International Workshop on Multimedia Information Systems (pp. 103–109).

    Google Scholar 

  • Foschi, P. G., Kolippakkam, D., Liu, H. (2003). Feature selection for image data via learning. IMMCN, 1299–1302.

    Google Scholar 

  • Ge, S. S., He, H., & Shen, C. (2012). Geometrically local embedding in manifolds for dimension reduction. Pattern Recognition, 45, 1455–1470.

    Article  Google Scholar 

  • Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical leaming. New York: Springer.

    Book  Google Scholar 

  • He, X., Cai, D., Yan, S., Zhang, H. J. (2005). Neighbourhood preserving embedding. In Proceedings 10th IEEE International Conference on Computer Vision (pp. 1208–1213).

    Google Scholar 

  • He, X., Niyogi, P. (2003). Locality-preserving projections (LPP). Advances in Neural Information Processing Systems, 155–160.

    Google Scholar 

  • Jegou, H., Douze, M., & Schmid, C. (2010). Improving bag-of-features for large scale image search. International Journal of Computer Vision, 87(3), 316–336.

    Article  Google Scholar 

  • Lawrence, K. S., Sam, T. R. (2003). Think globally, fit locally: Unsupervised learning of low dimensional manifolds. Journal of Machine Learning Research, 119–155.

    Google Scholar 

  • Lazebnik, S., Schmid, C., Ponce, J. (2006). Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 2169–2178), New York.

    Google Scholar 

  • Li, J. (2012). Gabor filter based optical image recognition using Fractional Power Polynomial model based common discriminant locality-preserving projection with kernels. Optics and Lasers in Engineering, 50, 1281–1286.

    Article  Google Scholar 

  • Li, J., Pan, J.-S., & Chen, S.-M. (2011). Kernel self-optimised locality-preserving discriminant analysis for feature extraction and recognition. Neurocomputing, 74, 3019–3027.

    Article  Google Scholar 

  • Li, F. F., Perona, P. (2005). A Bayesian hierarchical model for learning natural scene categories. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 524–531), San Diego, CA, USA.

    Google Scholar 

  • Li, B., & Zhang, Y. (2011). Supervised locally linear embedding projection (SLLEP) for machinery fault diagnosis. Mechanical Systems and Signal Processing, 25, 3125–3134.

    Article  Google Scholar 

  • Liu, H., Mandvikar, A., Foschi, P. (2003). An active learning approach to Egeria densa detection in digital imagery. In Next generation of data-mining applications (pp. 189–210). Wiley.

    Google Scholar 

  • Liu, L., Wang, L., Liu, X. (2011). In defence of soft-assignment coding. In IEEE International Conference on Computer Vision (ICCV) (pp. 2486–2493), Barcelona, Spain.

    Google Scholar 

  • Ojala, T., Pietikäinen, M., & Mäenpää, T. (2002). Multiresolution grayscale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), 971–987.

    Article  Google Scholar 

  • Ordonez, C., Omieeinski, E. (1999). Discovering association rules based on image content. In Proceedings IEEE Forum on Research and Technology Advances in Digital Libraries (Vol. 1999, pp. 38–49).

    Google Scholar 

  • Pan, Y., Ge, S. S., & Mamun, A. A. (2009). Weighted locally linear embedding for dimension reduction. Pattern Recognition, 42, 798–811.

    Article  Google Scholar 

  • Philbin, J., Chum, O., Isard, M., et al. (2008). Lost in quantisation: Improving object retrieval in large scale image databases. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 1–8), Anchorage, AK, USA.

    Google Scholar 

  • Roweis,S. T., Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500), 2323–2326.

    Article  Google Scholar 

  • Rubner, Y., Tomasi, C., & Guibas, L. J. (2010). The earth mover’s distance as a metric for image retrieval. International Journal of Computer Vision, 40(2), 99–121.

    Article  Google Scholar 

  • Rüdiger, W., Joche, H. (2000). GRISP–DM: Towards a standard process model for data mining. In Proceedings of the Fourth International Conference on the Practical Application of Knowledge Discovery and Data Mining (pp. 29–39).

    Google Scholar 

  • Rumelhart, D. E., Hinton, G. E., Williams, R. J. (1988). Learning representations by back-propagating errors. In Neurocomputing: Foundations of research (pp. 533–536). MIT Press.

    Google Scholar 

  • Schölkopf, B., Platt, J., Hofmann, T. (2006). Greedy layer-wise training of deep networks. In International Conference on Neural Information Processing Systems (pp. 153–160). MIT Press.

    Google Scholar 

  • Scholkopf, B., Smola, A. J. (2002). Learning with kernels: Support vector machines, regularisation, optimisation, and beyond. The MIT Press.

    Google Scholar 

  • Seung, H. S., Lee, D. D. (2000). The manifold ways of perception. Science, 2268–2269.

    Article  Google Scholar 

  • Shawe-Taylor, J., Cristianini, N. (2004). Kernel methods for pattern analysis. Cambridge University Press.

    Google Scholar 

  • Tenenbaum, J., De Silva, V., & Langford, J. C. (2000). A global geometric framework for nonlinear dimension reduction. Science, 290(5500), 2319–2323.

    Article  Google Scholar 

  • Wang, J., Yang, J., Yu, K., et al. (2010). Locality-constrained linear coding for image classification. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 3360–3367), San Francisco, CA, USA.

    Google Scholar 

  • Weinberger, K. Q., & Saul, L. K. (2006). Unsupervised learning of image manifolds by semi-definite programming. International Journal of Computer Vision, 70(1), 77–90.

    Article  Google Scholar 

  • Wen, G. (2009). Relative transformation-based neighbourhood optimisation for isometric embedding. Neurocomputing, 72, 1205–1213.

    Article  Google Scholar 

  • Xiao, R. (2011). Discriminant analysis and manifold learning of high dimensional space patterns. Shanghai Jiao Tong University.

    Google Scholar 

  • Yan, S., Xu, D., Zhang, B., Zhang, J., Yang, Q., & Lin, S. (2007). Graph embedding and extensions: A general framework for dimensionality reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(1), 40–51.

    Article  Google Scholar 

  • Yang, L. (2005a). Building k-edge-connected neighbourhood graphs for distance-based data projection. Pattern Recognition Letters, 26(13), 2015–2021.

    Article  Google Scholar 

  • Yang, L. (2005b). Building k edge-disjoint spanning trees of minimum total length for isometric data embedding. In IEEE Transaction on Pattern Analysis and Machine Intelligence, 27(10), 1680–1683.

    Article  Google Scholar 

  • Yang, L. (2006a). Building k-Connected Neighbourhood Graphs for Isometric Data Embedding. IEEE Transaction on Pattern Analysis and Machine Intelligence, 28(5), 827–831.

    Article  Google Scholar 

  • Yang, L. (2006b). Locally multidimensional scaling for nonlinear dimensionality reduction. In 18th International Conference Pattern Recognition (ICPR’06) (Vol. 4, pp. 202–205).

    Google Scholar 

  • Zaiane, O. R., Han, J. (2000). Discovering spatial associations in images. In Proceedings of SPIE (Vol. 4057, pp. 138–147).

    Google Scholar 

  • Zaiane, O. R., Han, J., Li, S., Chee, S. H., Chiang, J. Y. (1998). MultiMediaMiner: A system prototype for multimedia data mining. In ACM SIGMOD International Conference on Management of Data (Vol. 27, No. 2, pp. 581–583).

    Article  Google Scholar 

  • Zhang, S. (2009). Enhanced supervised locally linear embedding. Pattern Recognition Letters, 30, 1208–1218.

    Article  Google Scholar 

  • Zhang, L. (2010). Research and application of large-scale machine learning theory. Zhejiang University.

    Google Scholar 

  • Zhang, J., Hsu, W., Lee, M. (2001). An information-driven framework for image mining. In The 12th International Conference on Database and Expert Systems Applications (Vol. 2113, pp. 232–242).

    Google Scholar 

  • Zhang, Z., Yang, F., Xia, K., & Yang, R. (2008). A supervised LPP algorithm and its application to face recognition. Journal of Electronics and Information Technology, 30(3), 539–541.

    Article  Google Scholar 

  • Zhang, T., Yang, J., & Zhao, D. (2007). Linear local tangent space alignment and application to face recognition. Neuro computing, 70(7–9), 1547–1553.

    Google Scholar 

  • Zhang, Z., & Zha, H. (2005). Principal manifolds and nonlinear dimension reduction via local tangent space alignment. SIAM Journal on Scientific Computing, 26(1), 313–338.

    Article  Google Scholar 

  • Zhao, L., & Zhang, Z. (2009). Supervised locally linear embedding with probability based distance for classification. Computers & Mathematics with Applications, 57, 919–926.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianfa Bai .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bai, L., Han, J., Yue, J. (2019). Introduction. In: Night Vision Processing and Understanding. Springer, Singapore. https://doi.org/10.1007/978-981-13-1669-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1669-2_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1668-5

  • Online ISBN: 978-981-13-1669-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics