Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 440 Accesses

Abstract

Hydrogen-bonding interaction is ubiquitous in nature and plays an essential role in a broad spectrum of physics, chemistry, biology, energy and material sciences. NQEs, in terms of zero-point fluctuation, could influence the H-bonding interactions and consequently the structure of H-bonded networks due to the anharmonic nature of the potential well. In this chapter, I will report the quantitative assessment of NQEs on the strength of a single H bond formed at a water-salt interface using the tip-enhanced IETS technique. Isotopic substitution experiments combined with state-of-the-arts quantum simulations reveal that the anharmonic quantum fluctuations of hydrogen nuclei weaken the weak hydrogen bonds and strengthen the strong ones. However, this trend can be completely reversed when the hydrogen bond is strongly coupled to the polar atomic sites of the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benoit M, Marx D, Parrinello M (1998) Tunnelling and zero-point motion in high-pressure ice. Nature 392:258–261

    Article  ADS  Google Scholar 

  2. Loubeyre P, LeToullec R, Wolanin E, Hanfland M, Husermann D (1999) Modulated phases and proton centring in ice observed by X-ray diffraction up to 170 GPa. Nature 397:503–506

    Article  ADS  Google Scholar 

  3. Schwegler E, Sharma M, Gygi F, Galli G (2008) Melting of ice under pressure. Proc Natl Acad Sci USA 105:14779–14783

    Article  ADS  Google Scholar 

  4. Morrone JA, Lin L, Car R (2009) Tunneling and delocalization effects in hydrogen bonded systems: a study in position and momentum space. J Chem Phys 130:204511

    Article  ADS  Google Scholar 

  5. Li X-Z, Probert MIJ, Alavi A, Michaelides A (2010) Quantum nature of the proton in water-hydroxyl overlayers on metal surfaces. Phys Rev Lett 104:066102

    Article  ADS  Google Scholar 

  6. Kumagai T et al (2010) Symmetric hydrogen bond in a water-hydroxyl complex on Cu(110). Phys Rev B 81:045402

    Article  ADS  Google Scholar 

  7. Ubbelohde AR, Gallagher KJ (1955) Acid-base effects in hydrogen bonds in crystals. Acta Crystallogr 8:71–83

    Article  Google Scholar 

  8. Matsushita E, Matsubara T (1982) Note on isotope effect in hydrogen bonded crystals. Prog Theor Phys 67:1–19

    Article  ADS  Google Scholar 

  9. Nagata Y, Pool RE, Backus EHG, Bonn M (2012) Nuclear quantum effects affect bond orientation of water at the water-vapor interface. Phys Rev Lett 109:226101

    Article  ADS  Google Scholar 

  10. Swalina C, Wang Q, Chakraborty A, Hammes-Schiffer S (2007) Analysis of nuclear quantum effects on hydrogen bonding. J Phys Chem A 111:2206–2212

    Article  Google Scholar 

  11. Gregory JK, Clary DC (1996) Structure of water clusters. The contribution of many-body forces, monomer relaxation, and vibrational zero-point energy. J Phys Chem 100:18014–18022

    Article  Google Scholar 

  12. Clary DC, Benoit DM, Van Mourik T (2000) H-densities: a new concept for hydrated molecules. Acc Chem Res 33:441–447

    Article  Google Scholar 

  13. Voth GA, Chandler D, Miller WH (1989) Rigorous formulation of quantum transition state theory and its dynamical corrections. J Chem Phys 91:7749–7760

    Article  ADS  Google Scholar 

  14. Tuckerman ME, Marx D, Klein ML, Parrinello M (1997) On the quantum nature of the shared proton in hydrogen bonds. Science 275:817–820

    Article  Google Scholar 

  15. Morrone JA, Car R (2008) Nuclear quantum effects in water. Phys Rev Lett 101:017801

    Article  ADS  Google Scholar 

  16. Paesani F, Voth GA (2009) The properties of water: insights from quantum simulations. J Phys Chem B 113:5702–5719

    Article  Google Scholar 

  17. Li X-Z, Walker B, Michaelides A (2011) Quantum nature of the hydrogen bond. Proc Natl Acad Sci USA 108:6369–6373

    Article  ADS  Google Scholar 

  18. Rozenberg M, Loewenschuss A, Marcus Y (2000) An empirical correlation between stretching vibration redshift and hydrogen bond length. Phys Chem Chem Phys 2:2699–2702

    Article  Google Scholar 

  19. Guo J et al (2014) Real-space imaging of interfacial water with submolecular resolution. Nat Mater 13:184–189

    Article  ADS  Google Scholar 

  20. Guo J et al (2016) Nuclear quantum effects of hydrogen bonds probed by tip-enhanced inelastic electron tunneling. Science 352:321–325

    Article  ADS  Google Scholar 

  21. Ohara M, Kim Y, Yanagisawa S, Morikawa Y, Kawai M (2008) Role of molecular orbitals near the Fermi level in the excitation of vibrational modes of a single molecule at a scanning tunneling microscope junction. Phys Rev Lett 100:136104

    Article  ADS  Google Scholar 

  22. Stiopkin IV et al (2011) Hydrogen bonding at the water surface revealed by isotopic dilution spectroscopy. Nature 474:192–195

    Article  ADS  Google Scholar 

  23. Persson BNJ, Baratoff A (1987) Inelastic electron tunneling from a metal tip: the contribution from resonant processes. Phys Rev Lett 59:339–342

    Article  ADS  Google Scholar 

  24. Baratoff A, Persson BNJ (1988) Theory of the local tunneling spectrum of a vibrating adsorbate. J Vac Sci Technol A 6:331–335

    Article  ADS  Google Scholar 

  25. Iogansen AV (1999) Direct proportionality of the hydrogen bonding energy and the intensification of the stretching v(XH) vibration in infrared spectra. Spectrochim Acta Part A 55:1585–1612

    Article  ADS  Google Scholar 

  26. Ceriotti M et al (2016) Nuclear quantum effects in water and aqueous systems: experiment, theory, and current challenges. Chem Rev 116:7529–7550

    Article  Google Scholar 

  27. Fang W et al (2016) Inverse temperature dependence of nuclear quantum effects in DNA base pairs. J Phys Chem Lett 7:2125–2131

    Article  Google Scholar 

  28. Ceriotti M et al (2016) Nuclear quantum effects in water and aqueous systems: experiment, theory, and current challenges. Chem Rev 116:7529–7550

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Guo .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guo, J. (2018). Nuclear Quantum Effect of Hydrogen Bonds. In: High Resolution Imaging, Spectroscopy and Nuclear Quantum Effects of Interfacial Water. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-1663-0_6

Download citation

Publish with us

Policies and ethics