Skip to main content

Concerted Proton Tunneling

  • Chapter
  • First Online:
  • 479 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Proton transfer through hydrogen bonds plays a fundamental role in many physical, chemical and biological processes. The complexity of proton dynamics largely arises from nuclear quantum effect in terms of proton tunneling, which tends to involve many hydrogen bonds simultaneously, leading to correlated many-body tunneling. In contrast to the well-studied incoherent single particle tunneling, our understanding of the many-body tunneling, especially the effect of local environment on the tunneling process, is still in its infancy. Here we report the real-space observation of concerted proton tunneling within a hydrogen-bonded water tetramer using a cryogenic scanning tunneling microscope (STM). This is achieved by monitoring in real time the reversible interconversion of the hydrogen-bonding chirality of the cyclic water tetramer with a chlorine-terminated STM tip. Interestingly, we found that the presence of the Cl anion at the tip apex may either enhance or suppress the concerted tunneling process depending on the details of coupling symmetry between the Cl- and the protons. This work opens up the possibility of controlling the quantum states of protons with atomic-scale precision.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Löwdin P-O (1963) Proton tunneling in DNA and its biological implications. Rev Mod Phys 35:724–732

    Article  ADS  Google Scholar 

  2. Caldin EF (1969) Tunneling in proton-transfer reactions in solution. Chem Rev 69:135–156

    Article  Google Scholar 

  3. Kreuer KD (1996) Proton conductivity: materials and applications. Chem Mater 8:610–641

    Article  Google Scholar 

  4. Benoit M, Marx D, Parrinello M (1998) Tunnelling and zero-point motion in high-pressure ice. Nature 392:258–261

    Article  ADS  Google Scholar 

  5. Frank RAW, Titman CM, Pratap JV, Luisi BF, Perham RN (2004) A molecular switch and proton wire synchronize the active sites in thiamine enzymes. Science 306:872–876

    Article  ADS  Google Scholar 

  6. Marx D (2006) Proton transfer 200 years after von Grotthuss: insights from ab initio simulations. ChemPhysChem 7:1848–1870

    Article  Google Scholar 

  7. Masgrau L et al (2006) Atomic description of an enzyme reaction dominated by proton tunneling. Science 312:237–241

    Article  ADS  Google Scholar 

  8. Horiuchi S et al (2010) Above-room-temperature ferroelectricity in a single-component molecular crystal. Nature 463:789–792

    Article  ADS  Google Scholar 

  9. Marx D, Chandra A, Tuckerman ME (2010) Aqueous basic solutions: hydroxide solvation, structural diffusion, and comparison to the hydrated proton. Chem Rev 110:2174–2216

    Article  Google Scholar 

  10. Brougham DF, Caciuffo R, Horsewill AJ (1999) Coordinated proton tunnelling in a cyclic network of four hydrogen bonds in the solid state. Nature 397:241–243

    Article  ADS  Google Scholar 

  11. Bove LE, Klotz S, Paciaroni A, Sacchetti F (2009) Anomalous proton dynamics in ice at low temperatures. Phys Rev Lett 103:165901

    Article  ADS  Google Scholar 

  12. Lin L, Morrone JA, Car R (2011) Correlated tunneling in hydrogen bonds. J Stat Phys 145:365–384

    Article  ADS  Google Scholar 

  13. Douhal A, Kim SK, Zewail AH (1995) Femtosecond molecular dynamics of tautomerization in model base pairs. Nature 378:260–263

    Article  ADS  Google Scholar 

  14. Billeter SR, Webb SP, Agarwal PK, Iordanov T, Hammes-Schiffer S (2001) Hydride transfer in liver alcohol dehydrogenase: quantum dynamics, kinetic isotope effects, and role of enzyme motion. J Am Chem Soc 123:11262–11272

    Article  Google Scholar 

  15. Pu JZ, Gao JL, Truhlar DG (2006) Multidimensional tunneling, recrossing, and the transmission coefficient for enzymatic reactions. Chem Rev 106:3140–3169

    Article  Google Scholar 

  16. Kwon OH, Zewail AH (2007) Double proton transfer dynamics of model DNA base pairs in the condensed phase. Proc Natl Acad Sci USA 104:8703–8708

    Article  ADS  Google Scholar 

  17. Koch M et al (2017) Direct observation of double hydrogen transfer via quantum tunneling in a single porphycene molecule on a Ag(110) surface. J Am Chem Soc 139:12681–12687

    Article  Google Scholar 

  18. Castro Neto AH, Pujol P, Fradkin E (2006) Ice: a strongly correlated proton system. Phys Rev B 74:024302

    Article  ADS  Google Scholar 

  19. Richardson JO et al (2016) Concerted hydrogen-bond breaking by quantum tunneling in the water hexamer prism. Science 351:1310–1313

    Article  ADS  Google Scholar 

  20. Liljeroth P, Repp J, Meyer G (2007) Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules. Science 317:1203–1206

    Article  ADS  Google Scholar 

  21. Kumagai T et al (2008) Direct observation of hydrogen-bond exchange within a single water dimer. Phys Rev Lett 100:166101

    Article  ADS  Google Scholar 

  22. Kumagai T et al (2010) Symmetric hydrogen bond in a water-hydroxyl complex on Cu(110). Phys Rev B 81:045402

    Article  ADS  Google Scholar 

  23. Auwarter W et al (2012) A surface-anchored molecular four-level conductance switch based on single proton transfer. Nat Nanotech 7:41–46

    Article  ADS  Google Scholar 

  24. Kumagai T et al (2012) H-atom relay reactions in real space. Nat Mater 11:167–172

    Article  ADS  Google Scholar 

  25. Kumagai T et al (2014) Controlling intramolecular hydrogen transfer in a porphycene molecule with single atoms or molecules located nearby. Nat Chem 6:41–46

    Article  Google Scholar 

  26. Kumagai T (2015) Direct observation and control of hydrogen-bond dynamics using low-temperature scanning tunneling microscopy. Prog Surf Sci 90:239–291

    Article  ADS  Google Scholar 

  27. Lauhon LJ, Ho W (2000) Direct observation of the quantum tunneling of single hydrogen atoms with a scanning tunneling microscope. Phys Rev Lett 85:4566–4569

    Article  ADS  Google Scholar 

  28. Heinrich AJ, Lutz CP, Gupta JA, Eigler DM (2002) Molecule cascades. Science 298:1381–1387

    Article  ADS  Google Scholar 

  29. Repp J, Meyer G, Rieder KH, Hyldgaard P (2003) Site determination and thermally assisted tunneling in homogenous nucleation. Phys Rev Lett 91:206102

    Article  ADS  Google Scholar 

  30. Stroscio JA, Celotta RJ (2004) Controlling the dynamics of a single atom in lateral atom manipulation. Science 306:242–247

    Article  ADS  Google Scholar 

  31. Kumagai T et al (2009) Tunneling dynamics of a hydroxyl group adsorbed on Cu(110). Phys Rev B 79:035423

    Article  ADS  Google Scholar 

  32. Drechsel-Grau C, Marx D (2014) Quantum simulation of collective proton tunneling in hexagonal ice crystals. Phys Rev Lett 112:148302

    Article  ADS  Google Scholar 

  33. Drechsel-Grau C, Marx D (2014) Exceptional isotopic-substitution effect: breakdown of collective proton tunneling in hexagonal ice due to partial deuteration. Angew Chem Int Ed 53:10937–10940

    Article  Google Scholar 

  34. Drechsel-Grau C, Marx D (2015) Tunneling in chiral water clusters. Protons in concert. Nat Phys 11:216–218

    Article  Google Scholar 

  35. Meng X et al (2015) Direct visualization of concerted proton tunnelling in a water nanocluster. Nat Phys 11:235–239

    Article  Google Scholar 

  36. Guo J et al (2014) Real-space imaging of interfacial water with submolecular resolution. Nat Mater 13:184–189

    Article  ADS  Google Scholar 

  37. Peng JB et al (2018) Weakly perturbative imaging of interfacial water with submolecular resolution by atomic force microscopy. Nat Commun 9:112

    Article  ADS  Google Scholar 

  38. Ho W (2002) Single-molecule chemistry. J Chem Phys 117:11033–11061

    Article  ADS  Google Scholar 

  39. Huang T et al (2011) A molecular switch based on current-driven rotation of an encapsulated cluster within a fullerene cage. Nano Lett 11:5327–5332

    Article  ADS  Google Scholar 

  40. Gawronski H, Carrasco J, Michaelides A, Morgenstern K (2008) Manipulation and control of hydrogen bond dynamics in absorbed ice nanoclusters. Phys Rev Lett 101:136102

    Article  ADS  Google Scholar 

  41. Feng YX et al (2018) The collective and quantum nature of proton transfer in the cyclic water tetramer on NaCl(001). J Chem Phys 148:102329

    Article  ADS  Google Scholar 

  42. Yen F, Gao T (2015) Dielectric anomaly in ice near 20 K: evidence of macroscopic quantum phenomena. J Phys Chem Lett 6:2822–2825

    Article  Google Scholar 

  43. Pauling L (1935) The structure and entropy of ice and of other crystals with some randomness of atomic arrangement. J Am Chem Soc 57:2680–2684

    Article  Google Scholar 

  44. Benton O, Sikora O, Shannon N (2016) Classical and quantum theories of proton disorder in hexagonal water ice. Phys Rev B 93:125143

    Article  ADS  Google Scholar 

  45. Kolesnikov AI et al (2016) Quantum tunneling of water in beryl: a new state of the water molecule. Phys Rev Lett 116:167802

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Guo .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guo, J. (2018). Concerted Proton Tunneling. In: High Resolution Imaging, Spectroscopy and Nuclear Quantum Effects of Interfacial Water. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-1663-0_5

Download citation

Publish with us

Policies and ethics