Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 496 Accesses

Abstract

Since “seeing is believing”, scanning probe microscopy (SPM), in terms of scanning tunneling microscopy (SPM) and atomic force microscopy (AFM), are proven to be one of the most versatile and important tools in the surface science research field, which own the ability of real space imaging with sub-Ångström resolution. In this chapter, I will give a detailed introduction of STM and non-contact atomic force microscopy (nc-AFM), focusing on the work principle, imaging, spectroscopic capabilities and applications in surface science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Binnig G, Rohrer H, Gerber C, Weibel E (1982) Tunneling through a controllable vacuum gap. Appl Phys Lett 40:178–180

    Article  ADS  Google Scholar 

  2. Binning G, Rohrer H, Gerber C, Weibel E (1982) Surface studies by scanning tunneling microscopy. Phys Rev Lett 49:57–61

    Article  ADS  Google Scholar 

  3. Binnig G, Rohrer H (1987) Scanning tunneling microscopy-from birth to adolescence. Rev Mod Phys 59:615–625

    Article  ADS  Google Scholar 

  4. Binnig G, Rohrer H, Gerber C, Weibel E (1983) 7×7 reconstruction on Si(111) resolved in real space. Phys Rev Lett 50:120–123

    Article  ADS  Google Scholar 

  5. Lang ND (1986) Theory of single-atom imaging in the scanning tunneling microscope. Phys Rev Lett 56:1164–1167

    Article  ADS  Google Scholar 

  6. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Article  ADS  Google Scholar 

  7. Kaiser WJ, Bell LD (1988) Direct investigation of subsurface interface electronic-structure by ballistic-electron-emission microscopy. Phys Rev Lett 60:1406–1409

    Article  ADS  Google Scholar 

  8. Nonnenmacher M, Oboyle MP, Wickramasinghe HK (1991) Kelvin probe force microscopy. Appl Phys Lett 58:2921–2923

    Article  ADS  Google Scholar 

  9. Hartmann U (1988) Magnetic force microscopy-some remarks from the micromagnetic point of view. J Appl Phys 64:1561–1564

    Article  ADS  Google Scholar 

  10. Betzig E, Trautman JK, Harris TD, Weiner JS, Kostelak RL (1991) Breaking the diffraction barrier-optical microscopy on a nanometric scale. Science 251:1468–1470

    Article  ADS  Google Scholar 

  11. Gao C, Wei T, Duewer F, Lu YL, Xiang XD (1997) High spatial resolution quantitative microwave impedance microscopy by a scanning tip microwave near-field microscope. Appl Phys Lett 71:1872–1874

    Article  ADS  Google Scholar 

  12. Michaelson HB (1977) Work function of the elements and its periodicity. J Appl Phys 48:4729–4733

    Article  ADS  Google Scholar 

  13. Bardeen J (1961) Tunnelling from a many-particle point of view. Phys Rev Lett 6:57

    Article  ADS  Google Scholar 

  14. Lang ND (1986) Spectroscopy of single atoms in the scanning tunneling microscope. Phys Rev B 34:5947–5950

    Article  ADS  Google Scholar 

  15. Tersoff J, Hamann DR (1983) Theory and application for the scanning tunneling microscope. Phys Rev Lett 50:1998–2001

    Article  ADS  Google Scholar 

  16. Tersoff J, Hamann DR (1985) Theory of the scanning tunneling microscope. Phys Rev B 31:805–813

    Article  ADS  Google Scholar 

  17. Buonsanti R, Llordes A, Aloni S, Helms BA, Milliron DJ (2011) Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals. Nano Lett 11:4706–4710

    Article  ADS  Google Scholar 

  18. Stipe BC, Rezaei MA, Ho W (1998) Single-molecule vibrational spectroscopy and microscopy. Science 280:1732–1735

    Article  ADS  Google Scholar 

  19. Stipe BC, Rezaei HA, Ho W (1999) Localization of inelastic tunneling and the determination of atomic-scale structure with chemical specificity. Phys Rev Lett 82:1724–1727

    Article  ADS  Google Scholar 

  20. Lee HJ, Ho W (1999) Single-bond formation and characterization with a scanning tunneling microscope. Science 286:1719–1722

    Article  Google Scholar 

  21. Lauhon LJ, Ho W (2000) Control and characterization of a multistep unimolecular reaction. Phys Rev Lett 84:1527–1530

    Article  ADS  Google Scholar 

  22. Kim Y, Komeda T, Kawai M (2002) Single-molecule reaction and characterization by vibrational excitation. Phys Rev Lett 89:126104

    Article  ADS  Google Scholar 

  23. Komeda T, Kim Y, Kawai M, Persson BNJ, Ueba H (2002) Lateral hopping of molecules induced by excitation of internal vibration mode. Science 295:2055–2058

    Article  ADS  Google Scholar 

  24. Komeda T (2005) Chemical identification and manipulation of molecules by vibrational excitation via inelastic tunneling process with scanning tunneling microscopy. Prog Surf Sci 78:41–85

    Article  ADS  Google Scholar 

  25. Ho W (2002) Single-molecule chemistry. J Chem Phys 117:11033–11061

    Article  ADS  Google Scholar 

  26. Grobis M et al (2005) Spatially dependent inelastic tunneling in a single metallofullerene. Phys Rev Lett 94:136802

    Article  ADS  Google Scholar 

  27. Lee J et al (2006) Interplay of electron-lattice interactions and superconductivity in Bi2Sr2CaCu2O8+δ. Nature 442:546–550

    Article  ADS  Google Scholar 

  28. Gawronski H, Mehlhorn M, Morgenstern K (2008) Imaging phonon excitation with atomic resolution. Science 319:930–933

    Article  ADS  Google Scholar 

  29. Chiang CL, Xu C, Han ZM, Ho W (2014) Real-space imaging of molecular structure and chemical bonding by single-molecule inelastic tunneling probe. Science 344:885–888

    Article  ADS  Google Scholar 

  30. Li SW et al (2015) Rotational spectromicroscopy: imaging the orbital interaction between molecular hydrogen and an adsorbed molecule. Phys Rev Lett 114:206101

    Article  ADS  Google Scholar 

  31. Han Z et al (2017) Probing intermolecular coupled vibrations between two molecules. Phys Rev Lett 118:036801

    Article  ADS  Google Scholar 

  32. Guo J et al (2016) Nuclear quantum effects of hydrogen bonds probed by tip-enhanced inelastic electron tunneling. Science 352:321–325

    Article  ADS  Google Scholar 

  33. Beebe JM, Moore HJ, Lee TR, Kushmerick JG (2007) Vibronic coupling in semifluorinated alkanethiol junctions: Implications for selection rules in inelastic electron tunneling spectroscopy. Nano Lett 7:1364–1368

    Article  ADS  Google Scholar 

  34. Taniguchi M, Tsutsui M, Yokota K, Kawai T (2009) Inelastic electron tunneling spectroscopy of single-molecule junctions using a mechanically controllable break junction. Nanotechnology 20:434008

    Article  ADS  Google Scholar 

  35. Kim Y et al (2011) Conductance and vibrational states of single-molecule junctions controlled by mechanical stretching and material variation. Phys Rev Lett 106:196804

    Article  ADS  Google Scholar 

  36. Bruot C, Hihath J, Tao NJ (2012) Mechanically controlled molecular orbital alignment in single molecule junctions. Nat Nanotech 7:35–40

    Article  ADS  Google Scholar 

  37. Song H et al (2009) Vibrational spectra of metal-molecule-metal junctions in electromigrated nanogap electrodes by inelastic electron tunneling. Appl Phys Lett 94:103110

    Article  ADS  Google Scholar 

  38. Scalapino DJ, Marcus SM (1967) Theory of inelastic electron-molecule interactions in tunnel junctions. Phys Rev Lett 18:459

    Article  ADS  Google Scholar 

  39. Persson BNJ, Baratoff A (1987) Inelastic electron tunneling from a metal tip: the contribution from resonant processes. Phys Rev Lett 59:339–342

    Article  ADS  Google Scholar 

  40. Lorente N, Persson M, Lauhon LJ, Ho W (2001) Symmetry selection rules for vibrationally inelastic tunneling. Phys Rev Lett 86:2593–2596

    Article  ADS  Google Scholar 

  41. Galperin M, Ratner MA, Nitzan A (2004) Inelastic electron tunneling spectroscopy in molecular junctions: peaks and dips. J Chem Phys 121:11965–11979

    Article  ADS  Google Scholar 

  42. Pecchia A et al (2004) Incoherent electron-phonon scattering in octanethiols. Nano Lett 4:2109–2114

    Article  ADS  Google Scholar 

  43. Chikkannanavar SB, Luzzi DE, Paulson S, Johnson AT (2005) Synthesis of peapods using substrate-grown SWNTs and DWNTs: an enabling step toward peapod devices. Nano Lett 5:151–155

    Article  ADS  Google Scholar 

  44. Sergueev N, Roubtsov D, Guo H (2005) Ab initio analysis of electron-phonon coupling in molecular devices. Phys Rev Lett 95:146803

    Article  ADS  Google Scholar 

  45. Viljas JK, Cuevas JC, Pauly F, Hafner M (2005) Electron-vibration interaction in transport through atomic gold wires. Phys Rev B 72:245415

    Article  ADS  Google Scholar 

  46. Solomon GC et al (2006) Understanding the inelastic electron-tunneling spectra of alkanedithiols on gold. J Chem Phys 124:094704

    Article  ADS  Google Scholar 

  47. Frederiksen T, Paulsson M, Brandbyge M, Jauho AP (2007) Inelastic transport theory from first principles: methodology and application to nanoscale devices. Phys Rev B 75:205413

    Article  ADS  Google Scholar 

  48. Galperin M, Ratner MA, Nitzan A (2007) Molecular transport junctions: vibrational effects. J Phys Condens Matter 19:103201

    Article  ADS  Google Scholar 

  49. Paulsson M, Frederiksen T, Brandbyge M (2005) Modeling inelastic phonon scattering in atomic- and molecular-wire junctions. Phys. Rev. B 72:201101

    Article  ADS  Google Scholar 

  50. Chen YC, Zwolak M, Di Ventra M (2003) Local heating in nanoscale conductors. Nano Lett. 3:1691–1694

    Article  ADS  Google Scholar 

  51. Lambe J, Jaklevic RC (1968) Molecular vibration spectra by inelastic electron tunneling. Phys Rev 165:821

    Article  ADS  Google Scholar 

  52. Paulsson M, Frederiksen T, Brandbyge M (2005) Modeling inelastic phonon scattering in atomic- and molecular-wire junctions. Phys Rev B 72:201101

    Article  ADS  Google Scholar 

  53. Lü JT et al (2014) Efficient calculation of inelastic vibration signals in electron transport: beyond the wide-band approximation. Phys Rev B 89:081405

    Article  ADS  Google Scholar 

  54. Egger R, Gogolin AO (2008) Vibration-induced correction to the current through a single molecule. Phys Rev B 77:113405

    Article  ADS  Google Scholar 

  55. Repp J, Meyer G, Stojkovic SM, Gourdon A, Joachim C (2005) Molecules on insulating films: scanning-tunneling microscopy imaging of individual molecular orbitals. Phys Rev Lett 94:026803

    Article  ADS  Google Scholar 

  56. Stroscio JA, Eigler DM (1991) Atomic and molecular manipulation with the scanning tunneling microscope. Science 254:1319–1326

    Article  ADS  Google Scholar 

  57. Stroscio JA, Celotta RJ (2004) Controlling the dynamics of a single atom in lateral atom manipulation. Science 306:242–247

    Article  ADS  Google Scholar 

  58. Han ZM et al (2017) Imaging the halogen bond in self-assembled halogenbenzenes on silver. Science 358:206+

    Article  ADS  Google Scholar 

  59. Zhang YB et al (2008) Giant phonon-induced conductance in scanning tunnelling spectroscopy of gate-tunable graphene. Nat Phys 4:627–630

    Article  Google Scholar 

  60. Heinrich AJ, Gupta JA, Lutz CP, Eigler DM (2004) Single-atom spin-flip spectroscopy. Science 306:466–469

    Article  ADS  Google Scholar 

  61. Hirjibehedin CF et al (2007) Large magnetic anisotropy of a single atomic spin embedded in a surface molecular network. Science 317:1199–1203

    Article  ADS  Google Scholar 

  62. Donati F et al (2013) Magnetic moment and anisotropy of individual Co atoms on graphene. Phys Rev Lett 111:236801

    Article  ADS  Google Scholar 

  63. Gimzewski JK, Sass JK, Schlitter RR, Schott J (1989) Enhanced photon-emission in scanning tunnelling microscopy. Europhys. Lett. 8:435–440

    Article  ADS  Google Scholar 

  64. Berndt R et al (1995) Atomic-resolution in photon-emission induced by a scanning tunneling microscope. Phys Rev Lett 74:102–105

    Article  ADS  Google Scholar 

  65. Nazin GV, Qiu XH, Ho W (2003) Atomic engineering of photon emission with a scanning tunneling microscope. Phys Rev Lett 90:216110

    Article  ADS  Google Scholar 

  66. Qiu XH, Nazin GV, Ho W (2003) Vibrationally resolved fluorescence excited with submolecular precision. Science 299:542–546

    Article  ADS  Google Scholar 

  67. Berndt R et al (1993) Photon-emission at molecular resolution induced by a scanning tunneling microscope. Science 262:1425–1427

    Article  ADS  Google Scholar 

  68. Wang T, Boer-Duchemin E, Zhang Y, Comtet G, Dujardin G (2011) Excitation of propagating surface plasmons with a scanning tunnelling microscope. Nanotechnology 22:175201

    Article  ADS  Google Scholar 

  69. Lutz T et al (2013) Molecular orbital gates for plasmon excitation. Nano Lett. 13:2846–2850

    Article  ADS  Google Scholar 

  70. Kuhnke K, Große C, Merino P, Kern K (2017) Atomic-scale imaging and spectroscopy of electroluminescence at molecular interfaces. Chem Rev 117:5174

    Article  Google Scholar 

  71. Dong ZC et al (2010) Generation of molecular hot electroluminescence by resonant nanocavity plasmons. Nat Photon 4:50–54

    Article  ADS  Google Scholar 

  72. Schneider NL, Lu JT, Brandbyge M, Berndt R (2012) Light emission probing quantum shot noise and charge fluctuations at a biased molecular junction. Phys Rev Lett 109:186601

    Article  ADS  Google Scholar 

  73. Dong ZC et al (2004) Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope. Phys Rev Lett 92:086801

    Article  ADS  Google Scholar 

  74. Reecht G et al (2014) Electroluminescence of a polythiophene molecular wire suspended between a metallic surface and the tip of a scanning tunneling microscope. Phys. Rev. Lett. 112:047403

    Article  ADS  Google Scholar 

  75. Chong MC et al (2016) Narrow-line single-molecule transducer between electronic circuits and surface plasmons. Phys Rev Lett 116:036802

    Article  ADS  Google Scholar 

  76. Zhang Y et al (2016) Visualizing coherent intermolecular dipole-dipole coupling in real space. Nature 531:623

    Article  ADS  Google Scholar 

  77. Imada H et al (2016) Real-space investigation of energy transfer in heterogeneous molecular dimers. Nature 538:364

    Article  ADS  Google Scholar 

  78. Giessibl FJ (2003) Advances in atomic force microscopy. Rev Mod Phys 75:949–983

    Article  ADS  Google Scholar 

  79. Liu M-X, Li S-C, Zha Z-Q, Qiu X-H (2017) Research progress and applications of qPlus noncontact atomic force microscopy. Acta Phy Chim Si 33:183–197

    Google Scholar 

  80. Gross L, Mohn F, Moll N, Liljeroth P, Meyer G (2009) The chemical structure of a molecule resolved by atomic force microscopy. Science 325:1110–1114

    Article  ADS  Google Scholar 

  81. Albrecht F, Neu M, Quest C, Swart I, Repp J (2013) Formation and characterization of a molecule-metal-molecule bridge in real space. J Am Chem Soc 135:9200–9203

    Article  Google Scholar 

  82. Zhang J et al (2013) Real-space identification of intermolecular bonding with atomic force microscopy. Science 342:611–614

    Article  ADS  Google Scholar 

  83. Kawai S et al (2016) Van der Waals interactions and the limits of isolated atom models at interfaces. Nat Commun 7:11559

    Article  ADS  Google Scholar 

  84. Hämäläinen SK et al (2014) Intermolecular contrast in atomic force microscopy images without intermolecular bonds. Phys Rev Lett 113:186102

    Article  ADS  Google Scholar 

  85. Gross L et al (2012) Bond-order discrimination by atomic force microscopy. Science 337:1326–1329

    Article  ADS  Google Scholar 

  86. de Oteyza DG et al (2013) Direct imaging of covalent bond structure in single-molecule chemical reactions. Science 340:1434–1437

    Article  ADS  Google Scholar 

  87. Mohn F, Gross L, Moll N, Meyer G (2012) Imaging the charge distribution within a single molecule. Nat Nanotech 7:227–231

    Article  ADS  Google Scholar 

  88. Ternes M, Lutz CP, Hirjibehedin CF, Giessibl FJ, Heinrich AJ (2008) The force needed to move an atom on a surface. Science 319:1066–1069

    Article  ADS  Google Scholar 

  89. Emmrich M et al (2015) Subatomic resolution force microscopy reveals internal structure and adsorption sites of small iron clusters. Science 348:308–311

    Article  ADS  Google Scholar 

  90. Bamidele J et al (2012) Chemical tip fingerprinting in scanning probe microscopy of an oxidized Cu(110) surface. Phys Rev B 86:155411

    Article  Google Scholar 

  91. Monig H et al (2013) Understanding scanning tunneling microscopy contrast mechanisms on metal oxides: a case study. Acs Nano 7:10233–10244

    Article  Google Scholar 

  92. Monig H et al (2016) Submolecular imaging by noncontact atomic force microscopy with an oxygen atom rigidly connected to a metallic probe. ACS Nano 10:1201–1209

    Article  Google Scholar 

  93. Monig H et al (2018) Quantitative assessment of intermolecular interactions by atomic force microscopy imaging using copper oxide tips. Nat Nanotech 13:371+

    Article  ADS  Google Scholar 

  94. Sader JE, Sugimoto Y (2010) Accurate formula for conversion of tunneling current in dynamic atomic force spectroscopy. Appl Phys Lett 97:043502

    Article  ADS  Google Scholar 

  95. Albers BJ et al (2009) Three-dimensional imaging of short-range chemical forces with picometre resolution. Nat Nanotech 4:307–310

    Article  ADS  Google Scholar 

  96. Baykara MZ, Schwendemann TC, Altman EI, Schwarz UD (2010) Three-dimensional atomic force microscopy-taking surface imaging to the next level. Adv Mater 22:2838–2853

    Article  Google Scholar 

  97. Moll N, Gross L, Mohn F, Curioni A, Meyer G (2010) The mechanisms underlying the enhanced resolution of atomic force microscopy with functionalized tips. New J Phys 12:125020

    Article  Google Scholar 

  98. Sugimoto Y et al (2007) Chemical identification of individual surface atoms by atomic force microscopy. Nature 446:64–67

    Article  ADS  Google Scholar 

  99. Loppacher C et al (2003) Direct determination of the energy required to operate a single molecule switch. Phys Rev Lett 90:066107

    Article  ADS  Google Scholar 

  100. Melitz W, Shen J, Kummel AC, Lee S (2011) Kelvin probe force microscopy and its application. Surf Sci Rep 66:1–27

    Article  ADS  Google Scholar 

  101. Gross L et al (2009) Measuring the charge state of an adatom with noncontact atomic force microscopy. Science 324:1428–1431

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Guo .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guo, J. (2018). Scanning Probe Microscopy. In: High Resolution Imaging, Spectroscopy and Nuclear Quantum Effects of Interfacial Water. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-1663-0_2

Download citation

Publish with us

Policies and ethics