Skip to main content

A Modified Shuffled Frog Leaping Algorithm for Constructing DNA Codes

  • Conference paper
  • First Online:
Computational Intelligence and Intelligent Systems (ISICA 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 873))

Included in the following conference series:

  • 675 Accesses

Abstract

High-quality DNA codes satisfying combinatorial constraints are important in the efficiency of DNA computing and other applications (e.g., DNA probes, DNA tagging). The key of constructing DNA codes is to find maximum sets of DNA codes that satisfy combinatorial constraints. In this paper, a modified Shuffled Frog Leaping Algorithm (MSFL) is proposed to construct DNA codes. 50 instances with Constant GC-content are carried out and when the length of codes is smaller than 13 the MSFL is able to improve some lower bounds, several of which are best-known. Comparing with previous works, the proposed algorithm is more efficient for constructing DNA codes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frutos, A.G., Liu, Q., Thiel, A.J., Sanner, A.M., Condon, A.E., Smith, L.M., Corn, R.M.: Demonstration of a word design strategy for DNA computing on surfaces. Nucleic Acids Res. 25(23), 4748–4757 (1997)

    Article  Google Scholar 

  2. Reif, J.H., LaBean, T.H., Seeman, N.C.: Challenges and applications for self-assembled DNA nanostructures? In: Condon, A., Rozenberg, G. (eds.) DNA 2000. LNCS, vol. 2054, pp. 173–198. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44992-2_12

    Chapter  MATH  Google Scholar 

  3. Brenner, S., Lerner, R.A.: Encoded combinatorial chemistry. Proc. Nat. Acad. Sci. 89(12), 5381–5383 (1992)

    Article  Google Scholar 

  4. Braich, R.S., et al.: Solution of a satisfiability problem on a gel-based DNA computer. In: Condon, A., Rozenberg, G. (eds.) DNA 2000. LNCS, vol. 2054, pp. 27–42. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44992-2_3

    Chapter  Google Scholar 

  5. Schena, M., Shalon, D., Davis, R.W., Brown, P.O.: Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235), 467–470 (1995)

    Article  Google Scholar 

  6. Tulpan, D., Andronescu, M., Chang, S.B., Shortreed, M.R., Condon, A., Hoos, H.H., Smith, L.M.: Thermodynamically based DNA strand design. Nucleic Acids Res. 33(15), 4951–4964 (2005)

    Article  Google Scholar 

  7. Condon, A.: Designed DNA molecules: principles and applications of molecular nanotechnology. Nat. Rev. Genet. 7(7), 565–575 (2006)

    Article  Google Scholar 

  8. Yazdi, S.M.H.T., Yuan, Y., Ma, J., Zhao, H., Milenkovic, O.: A rewritable, random-access DNA-based storage system. arXiv preprint arXiv:1505.02199 (2015)

  9. Marathe, A., Condon, A., Corn, R.M.: On combinatorial DNA word design. J. Comput. Biol. 8(3), 201–219 (2001)

    Article  Google Scholar 

  10. Ming, L., Lee, H.J., Condon, E.A., Corn, R.M.: DNA word design strategy for creating sets of non-interacting oligonucleotides for DNA microarrays. Langmuir 18(3), 805–812 (2002)

    Article  Google Scholar 

  11. Tulpan, D.C., Hoos, H.H., Condon, A.E.: Stochastic local search algorithms for DNA word design. In: Hagiya, M., Ohuchi, A. (eds.) DNA 2002. LNCS, vol. 2568, pp. 229–241. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36440-4_20

    Chapter  MATH  Google Scholar 

  12. King, O.D.: Bounds for DNA codes with constant GC-content. Electron. J. Comb. 10(1), 1–13 (2003)

    MathSciNet  MATH  Google Scholar 

  13. Tulpan, D.C., Hoos, H.H.: Hybrid randomised neighbourhoods improve stochastic local search for DNA code design. In: Xiang, Y., Chaib-draa, B. (eds.) AI 2003. LNCS, vol. 2671, pp. 418–433. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44886-1_31

    Chapter  Google Scholar 

  14. Gaborit, P., King, O.D.: Linear constructions for DNA codes. Theor. Comput. Sci. 334(1), 99–113 (2005)

    Article  MathSciNet  Google Scholar 

  15. Montemanni, R., Smith, D.H.: Construction of constant GC-content DNA codes via a variable neighbourhood search algorithm. J. Math. Modell. Algorithms 7(3), 311–326 (2008)

    Article  MathSciNet  Google Scholar 

  16. Hansen, P., Mladenović, N., Pérez, J.A.M.: Variable neighbourhood search: methods and applications. Ann. Oper. Res. 175(1), 367–407 (2010)

    Article  MathSciNet  Google Scholar 

  17. Chee, Y.M., Ling, S.: Improved lower bounds for constant GC-content DNA codes. IEEE Trans. Inf. Theor. 54(1), 391–394 (2008)

    Article  MathSciNet  Google Scholar 

  18. Niema, A.: The construction of DNA codes using a computer algebra system. Ph.D thesis. University of Glamorgan (2011)

    Google Scholar 

  19. Montemanni, R., Smith, D.H., Koul, N.: Three metaheuristics for the construction of constant GC-content DNA codes. Lect. Notes Manage. Sci. 6, 167–175 (2014)

    Google Scholar 

  20. Tulpan, D., Smith, D.H., Montemanni, R.: Thermodynamic post-processing versus GC-content pre-processing for DNA codes satisfying the hamming distance and reverse-complement constraints. IEEE/ACM Trans. Comput. Biol. Bioinf. 11(2), 441–452 (2014)

    Article  Google Scholar 

  21. Varbanov, Z., Todorov, T., Hristova, M.: A method for constructing DNA codes from additive self-dual codes over GF (4). ROMAI J. 10(2), 203–211 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Limbachiya, D., Rao, B., Gupta, M.K.: The art of DNA strings: sixteen years of DNA coding theory. arXiv preprint arXiv:1607.00266 (2016)

  23. Eusuff, M.M., Lansey, K.E.: Optimization of water distribution network design using the shuffled frog leaping algorithm. J. Water Resour. Plan. Manage. 129(3), 210–225 (2003)

    Article  Google Scholar 

  24. Bhattacharjee, K.K., Sarmah, S.P.: Shuffled frog leaping algorithm and its application to 0/1 knapsack problem. Appl. Soft Comput. 19, 252–263 (2014)

    Article  Google Scholar 

  25. Darvishi, A., Alimardani, A., Vahidi, B., Hosseinian, S.: Shuffled frog-leaping algorithm for control of selective and total harmonic distortion. J. Appl. Res. Technol. 12(1), 111–121 (2014)

    Article  Google Scholar 

  26. Jadidoleslam, M., Ebrahimi, A.: Reliability constrained generation expansion planning by a modified shuffled frog leaping algorithm. Int. J. Electr. Power Energy Syst. 64, 743–751 (2015)

    Article  Google Scholar 

  27. Moramelia, D., Iglesiasrey, P.L., Martinezsolano, F., Munozvelasco, P.: The efficiency of setting parameters in a modified shuffled frog leaping algorithm applied to optimizing water distribution networks. Water 8(5), 182 (2016)

    Article  Google Scholar 

  28. Orouji, H., Mahmoudi, N., Fallah-Mehdipour, E., Pazoki, M., Biswas, A.: Shuffled frog-leaping algorithm for optimal design of open channels. J. Irrig. Drain. Eng. 142(10), 06016008 (2016)

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported by the National Natural Science Foundation of China (Nos. 61425002, 61751203, 61772100, 61402066, 61672121, 61672051, 61572093, 61402067, 61370005, 31370778), Program for Changjiang Scholars and Innovative Research Team in University (No. IRT_15R07), the Program for Liaoning Innovative Research Team in University (No. LT2015002), the Basic Research Program of the Key Lab in Liaoning Province Educational Department (Nos. LZ2014049, LZ2015004), Scientific Research Fund of Liaoning Provincial Education (Nos. L2015015, L2014499), and the Program for Liaoning Key Lab of Intelligent Information Processing and Network Technology in University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Z., Wang, B., Zhou, C., Wei, X., Zhang, Q. (2018). A Modified Shuffled Frog Leaping Algorithm for Constructing DNA Codes. In: Li, K., Li, W., Chen, Z., Liu, Y. (eds) Computational Intelligence and Intelligent Systems. ISICA 2017. Communications in Computer and Information Science, vol 873. Springer, Singapore. https://doi.org/10.1007/978-981-13-1648-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1648-7_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1647-0

  • Online ISBN: 978-981-13-1648-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics