Skip to main content

Smart Calibration Technique for Auto-ranging of LVDT Using Support Vector Machine

  • Conference paper
  • First Online:
  • 1061 Accesses

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 478))

Abstract

Design of a calibration circuit for linear variable differential transformer (LVDT) used in the measurement of thickness. The objective of the proposed work is to design a calibration technique, which is adaptive to variation in the range of measurement. Sensitivity in measurement is one of the important parameters, which is always expected to be higher for an ideal instrument. Sensitivity of an instrument is fixed during the process of calibration for an instrument and it depends on the minimum and maximum values of measurement. Whenever there exists a condition, involving only a part of measurement range the sensitivity remains constant, in general the sensitivity should have been increased. For varying the sensitivity, there will be a need to recalibrate the instrument which is time consuming and tedious. In the proposed work, a Support Vector Machine (SVM)-based learning algorithm is used in place of a conventional calibration circuit, which will calibrate automatically based on the specified range.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Du, Z., Zhang, T., Deng, L., Zhou, C., Cao, Z., Wang, S.: A charge-amplifier based self-sensing method for measurement of piezoelectric displacement. In: International Conference on Mechatronics and Automation (2017)

    Google Scholar 

  2. Li, T., Tan, Y., Chaoyang S., Guo, Y., Najdovski, Z., Hongliang R., Zude, Z..: A high-sensitivity fiber bragg grating displacement sensor based on transverse property of a tensioned optical fiber configuration and its dynamic performance improvement. Sens. J. 17(18), 5840–5848 (2017)

    Article  Google Scholar 

  3. Liu, R., Zhang, K.: A novel design of non-contact GMR displacement measurement system based on neural network. In: International Conference on Information and Automation (2017)

    Google Scholar 

  4. Zhu, C., Chen, Y., Du, Y., Zhuang, Y., Liu, F., Gerald, R.E., Huang, J.A.: Displacement sensor with centimeter dynamic range and submicrometer resolution based on an optical interferometer. Sens. J. 17(17), 5523–5528 (2017)

    Google Scholar 

  5. Anandan, N., George, B.: A wide-range capacitive sensor for linear and angular displacement measurement. Indust. Electron. 64(7), 5728–5737 (2017)

    Article  Google Scholar 

  6. Farsad, M., Goch, G., Evans, C.: Application of correlation curve fitting to improve the absolute displacement measurement using speckle correlation. Precis. Eng. 129–134 (2016)

    Article  Google Scholar 

  7. Vallan, A., Casalicchio, M.L., Olivero, M., Perrone, G.: Assessment of a dual-wavelength compensation technique for displacement sensors using plastic optical fibers. IEEE Trans. Instrument. Meas. 61(5), 1377–1383 (2012)

    Article  Google Scholar 

  8. Rasolofondraibe, L., Pottier, B., Marconnet, P., Chiementin, X.: Capacitive sensor device for measuring loads on bearings. Sens. J. 12(6) (2012)

    Article  Google Scholar 

  9. Murthy, A., Rao, S.S., Herbert, M.A., Karanth, N.: Experimental study on linear displacement measurement sensor using RGB color variation technique with PID controller. In: International conference on Computer, Communications and Electronics (2017)

    Google Scholar 

  10. Li, Y., Guan, K., Hu, Z.: Fiber optic displacement measurement model based on finite reflective surface. Opt. Laser Technol. 84, 32–39 (2016)

    Article  Google Scholar 

  11. Kisic, M.G., Blaz, N.V., Zivanov, L.D., Damnjanovic, M.S.: Heterogeneous integrated wireless displacement sensor. IEEE Trans. Mag. 53(11), 4001–4104 (2017)

    Article  Google Scholar 

  12. Jie, L., Jian, G., Feng, W., Tan, J.: High-resolution and wide range displacement measurement based on planar grating. Opt. Commun. 404, 132–138 (2017)

    Article  Google Scholar 

  13. Feng, D., Feng, M.Q.: Identification of structural stiffness and excitation forces in time domain using noncontact vision based displacement measurement. J. Sound Vib. 406, 15–28 (2017)

    Article  Google Scholar 

  14. Wenlian, W., Wenxia, W., Liu, Z.: Investigation of displacement measurement method based on fringing field capacitor. IET Sci. Meas. Technol. 11(1), 63–66 (2017)

    Article  Google Scholar 

  15. Sun, A., Wu, Z., Fang, D., Zhang, J., Wang, W.: Multimode interference-based fiber-optic ultrasonic sensor for non-contact displacement measurement. Sens. J. 16(14), 5632–5635 (2016)

    Article  Google Scholar 

  16. Santhosh, K.V., Roy, B.K.: Online implementation of an adaptive calibration technique for displacement measurement using LVDT. Appl. Soft Comput. 53, 19–26 (2017)

    Article  Google Scholar 

  17. Agarwal, S., Shakher, C.: In-plane displacement measurement by using circular grating Talbot interferometer. Opt. Lasers Eng. 75, 63–71 (2015)

    Article  Google Scholar 

  18. Gard, M.F.: Optical measurement of angular deformation and torque inside a working drillstring. IEEE Trans. Instrument. Meas. 65(8), 1895–1901 (2016)

    Article  Google Scholar 

  19. Abir, J., Longo, S., Morantz, P., Shore, P.: Optimized estimator for real-time dynamic displacement measurement using accelerometers. Mechatronics 39, 1–11 (2016)

    Article  Google Scholar 

  20. Weiwen, L., Hui, Z., Wei, T., Chunfeng, L.V.: Research on combinatorial-code grating Eddy-current absolute-position sensor. IEEE Trans. Instrum. Meas. 61(4), 1113–1124 (2012)

    Article  Google Scholar 

  21. Peng, K., Liu, X., Chen, Z., Yu, Z., Pu, H.: Sensing mechanism and error analysis of a capacitive long range displacement nanometer sensor based on time grating. Sens. J. 17(6), 1596–1607 (2017)

    Article  Google Scholar 

  22. Franco, J.M., Mayag, B.M., Marulanda, J., Thomson, P.: Static and dynamic displacement measurements of structural elements using low cost RGB-D cameras. Eng. Struct. 153, 97–105 (2017)

    Article  Google Scholar 

  23. Bernal, O.D., Zabit, U., Bosch, T.: Study of laser feedback phase under self-mixing leading to improved phase unwrapping for vibration sensing. Sens. J. 13(12), 4962–4971 (2013)

    Article  Google Scholar 

  24. Morris, A.: Measurement and Instrumentation Principles. Butterworth Heinemann, Woburn (2001)

    Chapter  Google Scholar 

  25. Sawhney, A.K.: Puneet Sawhney Mechanical Measurements and Instrumentation & Control. Dhanpat Rai & Co., Delhi (2008)

    Google Scholar 

  26. Cristianini, N., Shawe, J.: An Introduction to Support Vector Machines and other Kernel-Based Learning Methods, Cambridge University Press (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preeti Mohanty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Santhosh, K.V., Mohanty, P. (2019). Smart Calibration Technique for Auto-ranging of LVDT Using Support Vector Machine. In: Ray, K., Sharan, S., Rawat, S., Jain, S., Srivastava, S., Bandyopadhyay, A. (eds) Engineering Vibration, Communication and Information Processing. Lecture Notes in Electrical Engineering, vol 478. Springer, Singapore. https://doi.org/10.1007/978-981-13-1642-5_49

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1642-5_49

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1641-8

  • Online ISBN: 978-981-13-1642-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics