Skip to main content

Wireless Technologies in IoT: Research Challenges

  • Conference paper
  • First Online:
Engineering Vibration, Communication and Information Processing

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 478))

Abstract

Internet of Things (IoT) is a technology to create smart world. To enable an IoT system, communication plays an important role. Everything in IoT depends on the flow of information. Many wireless technologies are available for the purpose but the choice for the right technology depends on the use case requirements. Reliability and availability of an IoT application is the outcome of reliable communication. Issues like scalability and heterogeneity present numerous challenges to the researchers. Mobility maintenance, packet delay, signal load, etc., are challenges that make reliable communication difficult and affect the quality of service. This paper presents the details of wireless technologies available for the IoT and discusses the open challenges and research issues in IoT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atzori, L., Iera, A., Morabito, G.: Understanding the internet of things: definition, potentials, and societal role of a fast-evolving paradigm. AdHoc Netw. 56, 122–140 (2017)

    Google Scholar 

  2. Lopez Research: An Introduction to Internet of Things: Part 1 of IoT series. Lopez Research. https://www.cisco.com/c/dam/en_us/solutions/trends/iot/introduction_to_IoT_november.pdf (2013)

  3. Internet-of-Things Architecture (IoT-A), Project Deliverable D1.2—Initial Architectural Reference Model for IoT. http://www.IoT-a.eu/public/public-documents/d1.2

  4. Kushalnagar, N., Montenegro, G., Schumacher, C.: IPv6 Over Low-Power Wirel. Pers. Area Netw. (6LoWPANs): Overv. Assumpt. Probl. Statement, Goals RFC 4919. https://doi.org/10.17487/rfc4919. (2007)

  5. Montenegro, G., Kushalnagar, N., Hui, J., Culler, D.: Transm. IPv6 Pack. IEEE 802.15. 4 Netw. Internet Eng. Task Force (IETF), Fremont, CA, USA, Internet Propos. Std. RFC 4944. https://doi.org/10.17487/rfc4944. (2007)

  6. Evans, D.: The Internet of Things How the next Evolution of Internet is changing Everything. CISCO, San Jose, CA, USA, White Paper. https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf (2011)

  7. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet of things: survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 17(4), 2347–2376 (2015). https://doi.org/10.1109/COMST.2015.2444095

    Article  Google Scholar 

  8. The EPC global Architecture Framework, EPC global Final Version 1.3, 2009. www.epcglobalinc.org

  9. Welbourne, E., Battle, L., Cole, G., Gould, K., Rector, K., Raymer, S., Balazinska, M., Borriello, G.: Building the internet of things using RFID: the RFID ecosystem experience. IEEE Internet Comput. 13(3), 48–55 (2009). https://doi.org/10.1109/MIC.2009.52

    Article  Google Scholar 

  10. Jaimes, L.G., Vergara-Laurens, I.J., Raij, A.: A survey of incentive techniques for mobile crowd sensing. IEEE Internet Things J. 2(5), 370–380 (2015). https://doi.org/10.1109/JIOT.2015.2409151

    Article  Google Scholar 

  11. Introduction to Architectural Reference Model for Internet of Things. http://www.IoT-a.eu/arm

  12. The industrial Internet reference architecture, version 1.7, Ind. Internet Consortium, Needham, MA, USA, Tech. Rep. IIC: PUB: G1: V1.07: PB:20150601. http://www.iiconsortium.org/IIRA.html (2015)

  13. Information Technology—Internet of Things Reference Architecture (IoT RA), International Organization for Standardization, ISO Central Secretariat, Geneva, Switzerland (2015)

    Google Scholar 

  14. Ganz, F., Puschmann, D., Barnaghi, P., Carrez, F.: A practical evaluation of information processing and abstraction techniques for the internet of things. IEEE Internet Things J. 2(4), 340–354 (2015)

    Article  Google Scholar 

  15. Barnaghi, P., Wang, W., Henson, C., Taylor, K.: Semantics for the internet of things: early progress and back to the future. Proc. IJSWIS 8(1), 1–21 (2012)

    Article  Google Scholar 

  16. Kamiya, T., Schneider, J.: Efficient XML Interchange (EXI) Format 1.0. World Wide Web Consortium, Cambridge, MA, USA, Recommend. REC-Exi-20110310 (2011). http://www.w3.org/TR/exi/

  17. Ganzha, M., Paprzyckia, M., Pawowski, W., Szmeja, P., Wasielewska, K.: Semantic interoperability in the internet of things; an overview from the INTER-IoT perspective. J. Netw. Comput. Appl. 81, 111–124 (2017)

    Article  Google Scholar 

  18. Xiaojiang, X., Jianli, W., Mingdong, L.: Services and key technologies of the internet of things. ZTE Commun. Shenzhen, China 2, 011 (2010)

    Google Scholar 

  19. Gigli, M., Koo, S.: Internet of things: services and applications categorization. Adv. Internet Things 1(2), 27–31 (2011)

    Article  Google Scholar 

  20. Kshetrimayum, R.S.: An introduction to UWB communication systems. IEEE Potentials 28(2), 9–13 (2009). https://doi.org/10.1109/MPOT.2009.931847

    Article  Google Scholar 

  21. Rajandekar, A., Sikdar, B.: On the feasibility of using WiFi white spaces for opportunistic M2M communications. IEEE Wirel. Commun. Lett. 4(6), 681–684 (2015)

    Article  Google Scholar 

  22. Park, M.: IEEE 802.11 ah: Sub-1-GHz license-exempt operation for the internet of things. IEEE Commun. Mag. 53, 145–151 (2015). https://doi.org/10.1109/MCOM.2015.7263359

    Article  Google Scholar 

  23. Qutab-ud-din, M., Hazmi, A., Badihi, B., Larmo, A., Torsner, J., Valkama, M.: Performance analysis of IoT-enabling IEEE 802.11 ah technology and its RAW mechanism with non-cross slot boundary holding schemes. In: 16th International Symposium on World of Wireless Mobile and Multimedia Networks. IEEE (2015). https://doi.org/10.1109/WoWMoM.2015.7158204

  24. Park, J., Jeong, S., Cho, J., Choi, H., Roh, W., Pi, Z.: Interference level control in mobile WiMAX uplink system. IEEE Mob. WiMAX Symp. IEEE, 52–56 (2009). https://doi.org/10.1109/MWS.2009.32

  25. Ndih, E.D.N., Cherkaoui, S.: On enhancing technology coexistence in the IoT era: Zig-Bee and 802.11 Case. IEEE Access 4, 1835–1844 (2016)

    Article  Google Scholar 

  26. Yang, J., Song, L., Koeppe, A.: LTE field performance for IoT applications. In: 84th Vehicular Technology Conference. IEEE (2016). https://doi.org/10.1109/VTCFall.2016.7881080

  27. Lauridsen, M., Kovacs, I.Z., Mogensen, P., Sorensen, M., Holst, S.: Coverage and capacity analysis of LTE-M and NB-IoT in a rural area. In: 84th Vehicular Technology Conference. IEEE (2016). https://doi.org/10.1109/VTCFall.2016.7880946

  28. Akinsiku, A., Jadav, D.: BeaSmart: a beacon enabled smarter work place. In: Network Operations and Management Symposium. IEEE, pp. 1269–1272 (2016). https://doi.org/10.1109/NOMS.2016.7503001

  29. Alletto, S., Cucchiara, R., Del Fiores, G., Mainetti, L., Mighalli, V., Patrono, L., Serra, G.: An indoor location—aware system for an IoT based smart Museum. IEEE Internet Things J. 3(2), 244–253 (2016)

    Article  Google Scholar 

  30. Chiang, T.H., Chuang, Y.T., Ke, C.L., Chen, L.J., Tseng, Y.C.: Calorie map: an activity intensity monitoring system based on wireless signals. In: Wireless Communications and Networking Conference. IEEE (2017). https://doi.org/10.1109/WCNC.2017.7925708

  31. LoRA Alliance: LoRAWANTM what is it? White Paper LoRA Alliance. https://docs.wixstatic.com/ugd/eccc1a_ed71ea1cd969417493c74e4a13c55685.pdf. (2015)

  32. Dongare, A., Hasling, C., Bhatia, K., Balanutta, A.: OpenChirp: a low-power wide area networking architecture. In: First International Conference on Pervasive Computing and Communications Workshop IEEE (2017). https://doi.org/10.1109/percomw.2017.7917625

  33. Neumann, P., Montavont, J., Noel, T.: Indoor deployment of LPWAN: a LoRaWAN case study. In: 12th International Conference on Wireless and Mobile Computing, Networking and Communications. IEEE (2016) https://doi.org/10.1109/wimob.2016.7763213

  34. Benson, K., Fracchia, C., Wang, G., Zhu, Q., Almomen, S., Cohn, J., D’Arcy, L., Hoffman, D., Makai, M., Stamatakis, J., Venkatasubramanian, N.: SCALE: safe community awareness and alerting leveraging the internet of things. IEEE Commun. Mag. 53(12), 27–34 (2015)

    Article  Google Scholar 

  35. Khan, M.S., Islam, M.S., Deng, H.: Design of a reconfigurable RFID sensing tag as a generic sensing platform towards the future Internet of Things. IEEE Internet Things J. 1(4), 300–310 (2014)

    Article  Google Scholar 

  36. Yacchirema, D.C., Palau, C.: Smart IoT gateway for heterogeneous devices interoperability. IEEE Latin Am. Trans. 14(8), 3900–3906 (2016)

    Article  Google Scholar 

  37. Macedo, D., Guedes, L.A., Silva, I.: A dependability evaluation for the internet of things incorporating redundancy aspects. In: International Conference on Networking, Sensing and Control (ICNSC). IEEE, pp. 417–422 (2014). https://doi.org/10.1109/icnsc.2014.6819662

  38. Li, J., Zhao, Y.Q., Yu, F.R., Huang, X.: Queuing analysis of two-hop relay technology in LTE/LTE-A networks with unsaturated and asymmetric traffic. IEEE Internet Things J. 3(3), 378–385 (2016)

    Article  Google Scholar 

  39. Wang, X., Chang, M.J., Shih, Y.Y., Chiang, M.: Internet of things session management over LTE-balancing signal load, power and delay. IEEE Internet Things J. 3(3), 339–353 (2016)

    Article  Google Scholar 

  40. Zhang, R., Wang, M., Shen, X., Xie, L.L.: Probabilistic analysis on QoS provisioning for IoT in LTE-A heterogeneous networks with partial spectrum usage. IEEE Internet Things J. 3(3), 354–365 (2016)

    Article  Google Scholar 

  41. de Andrade, T.P., Astudillo, C.A., da Fonseca, N.L.: Allocation of control resources for machine-to machine and human-to-human communications over LTE/LTE-A networks. IEEE Internet Things J. 3(3), 366–377 (2016)

    Article  Google Scholar 

  42. Li, F., Hong, J., Omabi, A.A.: Efficient certificateless access control for industrial IoT. Future Gener. Comput. Syst. 76, 285–292 (2017)

    Google Scholar 

  43. Khan, M., Silva, B.N., Han, K.: Internet of things based energy aware smart home control system. IEEE Access (2016). https://doi.org/10.1109/acess.2016.2621752

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit Singh Dhanda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dhanda, S.S., Singh, B., Jindal, P. (2019). Wireless Technologies in IoT: Research Challenges. In: Ray, K., Sharan, S., Rawat, S., Jain, S., Srivastava, S., Bandyopadhyay, A. (eds) Engineering Vibration, Communication and Information Processing. Lecture Notes in Electrical Engineering, vol 478. Springer, Singapore. https://doi.org/10.1007/978-981-13-1642-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1642-5_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1641-8

  • Online ISBN: 978-981-13-1642-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics