Skip to main content

Cellular Automata (CA) Model for Protein

  • Chapter
  • First Online:
A New Kind of Computational Biology

Abstract

CA model for protein is covered in this chapter. Design of CA rule for amino acid backbone is reported followed by the design of PCAM (Protein Modelling CA Machine). A protein chain with n amino acids is represented by 8n cell PCAM, each amino acid is represented with 8 CA cells. Digitally encoded amino acid side chain with 8-bit string is used as the initial state of 8 CA cells used for its backbone. For a protein chain, provision of 64 PCAMs is provided for modelling its interaction with different biomolecules. Protein interaction modelling is reported for two applications—(i) predicting binding contact residues for protein–protein interaction, and (ii) mutational study. Predicted results derived out of PCAM model are validated against the wet lab experimental results reported in databases and publications. In addition to validation of the results, the case study identifies which specific PCAM (out of the available 64) is appropriate for modelling the interaction. The binding affinity of two Monoclonal Antibodies (MAbs) on wild and mutated version of PD-L1 (implicated cancer immunotherapy) are reported confirming the CA rule appropriate for the mutational study of PD-L1 for a specific MAb.

“Genes are effectively one-dimensional. If you write down the sequence of A, C, G and T, that’s kind of what you need to know about that gene. But proteins are three-dimensional. They have to be because we are three-dimensional, and we’re made of those proteins. Otherwise we’d all sort of be linear, unimaginably weird creatures”.

—Francis Collins

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y, Ofran, Rost, B.: Protein–protein interaction hot-spots carved into sequences. PLoS Comput. Biol. 3(7), 119 (2007)

    Article  Google Scholar 

  2. Kundrotas, P., Belkin, S., Vakser, I.: Structure-function relationships in protein complexes. Biophys. J. 114(3), 46a (2018)

    Article  Google Scholar 

  3. Fersht, A.: Structure and mechanism in protein science: a guide to enzyme catalysis and protein folding. World Sci. 9 (2017)

    Google Scholar 

  4. Webb, B., Sali, A.: Protein structure modeling with MODELLER, pp. 1–15. Humana Press, New York, NY (2014)

    Google Scholar 

  5. Lee, J., Freddolino, P.L., Zhang, Y.: Ab initio protein structure prediction. From protein structure to function with bioinformatics, pp. 3–35. Springer, Dordrecht (2017)

    Chapter  Google Scholar 

  6. Moult, J., et al.: Critical assessment of methods of protein structure prediction (CASP)—round XII. Proteins Struct. Funct. Bioinf. 86, 7–15 (2017)

    Article  Google Scholar 

  7. Moreira, I.S., et al.: SpotOn: high accuracy identification of protein-protein interface hot-spots. Sci. Rep. 7(1), 8007 (2017)

    Article  Google Scholar 

  8. Burks, C., Farmer, D.: Towards modeling DNA sequences as automata. Physica D: nonlinear phenomena 10(1–2), 157–167 (1984)

    Article  MathSciNet  Google Scholar 

  9. Sirakoulis, G., Karafyllidis, I., Mizas, C., Mardiris, V., Thanailakis, A., Tsalides, P.: A cellular automaton model for the study of dna sequence evolution. Comput. Biol. Med. 33(5), 439–453 (2003)

    Article  Google Scholar 

  10. Mizas, C., Sirakoulis, G., Mardiris, V., Karafyllidis, I., Glykos, N., Sandaltzopoulos, R.: Reconstruction of dna sequences using genetic algorithms and cellular automata: towards mutation prediction? Biosystems 92(1), 61–68 (2008)

    Article  Google Scholar 

  11. de Sales, J.A., Martins, M.L., Stariolo, D.A.: Cellular automata model for gene networks. Phys. Rev. E 55, 3262–3270 (1997)

    Article  Google Scholar 

  12. Xiao, X., Shao, S., Ding, Y., Chen, X.: Digital coding for amino acid based on cellular automata. In: 2004 IEEE international conference on systems, man and cybernetics, vol. 5, pp. 4593–4598. Oct 2004

    Google Scholar 

  13. Xiao, X., Shao, S., Ding, Y., Huang, Z., Chou, K.-C.: Using cellular automata images and pseudo amino acid composition to predict protein subcellular location. Amino Acids 30(1), 49–54 (2006)

    Article  Google Scholar 

  14. Xiao, X., Wang, P., Chou, K.-C.: Gpcr-ca: a cellular automaton image approach for predicting g-protein-coupled receptor functional classes. J. Comput. Chem. 30(9), 1414–1423 (2008)

    Article  Google Scholar 

  15. Xiao, X., Ling, W.: Using cellular automata images to predict protein structural classes. In: The 1st International Conference on Bioinformatics and Biomedical Engineering, pp. 346–349. ICBBE 2007, July 2007

    Google Scholar 

  16. Xiao, X., Wang, P., Chou, K.-C.: Predicting protein structural classes with pseudo amino acid composition: An approach using geometric moments of cellular automaton image. J. Theor. Biol. 254(3), 691–696 (2008)

    Article  MathSciNet  Google Scholar 

  17. Chou, K.-C.: Prediction of protein cellular attributes using pseudo amino acid composition. Proteins Struct. Funct. Genet. 43, 246–255 (2001)

    Article  Google Scholar 

  18. Chou, K.-C.: Some remarks on protein attribute prediction and pseudo amino acid composition. J. Theor. Biol. 273(1), 236–247 (2011)

    Article  MathSciNet  Google Scholar 

  19. Xiao, X., Wang, P., Chou, K.-C.: Cellular automata and its applications in protein bioinformatics. Curr. Protein Pept. Sci. 12(6), 508–519 (2011)

    Article  Google Scholar 

  20. Santos, J., Villot, P., Dieguez, M.: Cellular automata for modeling protein folding using the HP model. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 1586–1593. June 2013

    Google Scholar 

  21. Santos, J., Villot, P., Dieguez, M.: Emergent protein folding modeled ´ with evolved neural cellular automata using the 3D HP model. J. Comput. Biol. 21(11), 823–845 (2014)

    Article  Google Scholar 

  22. Chopra, P., Bender, A.: Evolved cellular automata for protein secondary structure prediction imitate the determinants for folding observed in nature. Silico Biology 7(7), 87–93 (2006)

    Google Scholar 

  23. Cristea P.: Independent component analysis for genetic signals. In: SPIE Conference BIOS 2001-International Biomedical Optics Symposium, pp. 20–26. San Jose, USA, January 2001

    Google Scholar 

  24. Pan, Y.X., et al.: Application of pseudo amino acid composition for predicting protein subcellular location: stochastic signal processing approach. J. Protein Chem. 22(4), 395–402 (2003)

    Article  Google Scholar 

  25. Haralick, R.M., Shanmugam, K.: Textural features for image classification. IEEE Trans. Syst. Man Cybernet. 6, 610–621 (1973)

    Article  Google Scholar 

  26. De Maesschalck, R., DelphineJouan, R., Massart, D.L.: The mahalanobis distance. Chemometr. Intell. Lab. Syst. 50(1), 1–18 (2000)

    Article  Google Scholar 

  27. Petta, I., Lievens, S., Libert, C., Tavernier, J., De Bosscher, K.: Modulation of protein–protein interactions for the development of novel therapeutics. Mol. Ter. 24, 707–718 (2016). https://doi.org/10.1038/mt.2015.214

    Article  Google Scholar 

  28. Clackson, T., Wells, J.A.: A hot-spot of binding energy in a hormone-receptor interface. Science 267, 383–386 (1995)

    Article  Google Scholar 

  29. Te Moreira, I.S.: Role of water occlusion for the definition of a protein binding hot-spot. Curr. Top. Med. Chem. 15, 2068–2079 (2015)

    Article  Google Scholar 

  30. Moreira, I.S., Fernandes, P.A., Ramos, M.J.: Hot-spots—a review of the protein-protein interface determinant amino-acid residues. Proteins 68, 803–812 (2007). https://doi.org/10.1002/prot.21396

    Article  Google Scholar 

  31. Ramos, R.M., Moreira, I.S.: Computational Alanine scanning mutagenesis—an improved methodological approach for protein DNA complexes. J. Chem. Theory Comput. 9, 4243–4256 (2013). https://doi.org/10.1021/ct400387r

    Article  Google Scholar 

  32. Brender, J.R., Zhang, Y.: Predicting the effect of mutations on protein-protein binding interactions through structure-based interface profiles. PLoS Comput. Biol. 11, e1004494 (2015). https://doi.org/10.1371/journal.pcbi.1004494

    Article  Google Scholar 

  33. Xue, L.C., Dobbs, D., Bonvin, A.M.J.J., Honavar, V.: Computational prediction of protein interfaces: a review of data driven methods. FEBS Lett. 589, 3516–3526 (2015). https://doi.org/10.1016/j.febslet.2015.10.003

    Article  Google Scholar 

  34. Melo, R., et al.: A machine learning approach for hot-spot detection at protein-protein interfaces. Int. J. Molec. Sci. 17, 1215 (2016). https://doi.org/10.3390/ijms17081215

    Article  Google Scholar 

  35. Chou, K.C.: Some remarks on protein attribute prediction and pseudo amino acid composition. J. Theor. Biol. 273, 236–247 (2011). https://doi.org/10.1016/j.jtbi.2010.12.024

    Article  MathSciNet  MATH  Google Scholar 

  36. Chen, W., Feng, P., Ding, H., Lin, H.: PAI: predicting adenosine to inosine editing sites by using pseudo nucleotide compositions. Sci. Rep. 6, 35123 (2016). https://doi.org/10.1038/srep35123

    Article  Google Scholar 

  37. Herbst, R.S., Soria, J.C., Kowanetz, M., Fine, G.D., Hamid, O., Gordon, M.S., Sosman, J.A., McDermott, D.F., Powderly, J.D., Gettinger, S.N., Kohrt, H.E., Horn, L., Lawrence, D.P., et al.: Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515, 563–567 (2014)

    Article  Google Scholar 

  38. Chen, L., Flies, D.B.: Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat. Rev. Immunol. 13, 227–242 (2013)

    Article  Google Scholar 

  39. Greenwald, R.J., Freeman, G.J., Sharpe, A.H.: The B7 family revisited. Ann. Rev. Immunol. 23, 515–548 (2005)

    Article  Google Scholar 

  40. Lenschow, D.J., Walunas, T.L., Bluestone, J.A.: CD28/B7 system of T cell costimulation. Ann. Rev. Immunol. 14, 233–258 (1996)

    Article  Google Scholar 

  41. Carreno, B.M., Collins, M.: The B7 family of ligands and its receptors: new pathways for costimulation and inhibition of immune responses. Ann. Rev. Immunol. 20, 29–53 (2002)

    Article  Google Scholar 

  42. Dong, H., Zhu, G., Tamada, K., Chen, L.: B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat. Med. 5, 1365–1369 (1999)

    Article  Google Scholar 

  43. Tan, S., Zhang, C.W., Gao, G.F.: Seeing is believing: anti-PD-1/PD-L1 monoclonal antibodies in action for checkpoint blockade tumor immunotherapy. Signal Trans. Target. Therap. 1, 16029 (2016)

    Article  Google Scholar 

  44. Zhang, F., et al.: Structural basis of the therapeutic anti-PD-L1 antibody atezolizumab. Oncotarget 8(52), 90215–90224 (2017)

    Google Scholar 

  45. Tan, S., et al.: Distinct PD-L1 binding characteristics of therapeutic monoclonal antibody durvalumab. Protein Cell 9(1), 135–139 (2018)

    Article  Google Scholar 

  46. Gay, C.L., et al.: Clinical trial of the anti-PD-L1 antibody BMS-936559 in HIV-1 infected participants on suppressive antiretroviral therapy. J. Infect. Dis. 215(11), 1725–1733 (2017)

    Article  Google Scholar 

  47. Wishart, D.S., et al.: DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 46(D1), D1074–D1082 (2017)

    Article  Google Scholar 

  48. Zhang, F., Wei, H., Wang, X., Bai, Y., Wang, P., Wu, J., Jiang, X., Wang, Y., Cai, H., Xu, T., Zhou, A.: Structural basis of a novel PD-L1 nanobody for immune checkpoint blockade. Cell Discov. 3, 17004 (2017)

    Article  Google Scholar 

  49. Zak, K.M., Grudnik, P., Guzik, K., Zieba, B.J., Musielak, B., Dömling, A., Dubin, G., Holak, T.A.: Structural basis for small molecule targeting of the programmed death ligand 1 (PD-L1). Oncotarget 7, 30323–30335 (2016)

    Article  Google Scholar 

  50. Guzik, K., Zak, K.M., Grudnik, P., Magiera, K., Musielak, B., Törner, R., Skalniak, L., Dömling, A., Dubin, G., Holak, T.A.: Small-molecule inhibitors of the programmed cell death-1/programmed death-ligand 1 (PD-1/PD-L1) interaction via transiently induced protein states and dimerization of PD-L1. J. Med. Chem. 60, 5857–5867 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parimal Pal Chaudhuri .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pal Chaudhuri, P., Ghosh, S., Dutta, A., Pal Choudhury, S. (2018). Cellular Automata (CA) Model for Protein. In: A New Kind of Computational Biology. Springer, Singapore. https://doi.org/10.1007/978-981-13-1639-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1639-5_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1638-8

  • Online ISBN: 978-981-13-1639-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics